| 001 | 909063 | ||
| 005 | 20230123110638.0 | ||
| 024 | 7 | _ | |a 10.1109/MGRS.2022.3145478 |2 doi |
| 024 | 7 | _ | |a 2128/31651 |2 Handle |
| 024 | 7 | _ | |a WOS:000838452500015 |2 WOS |
| 037 | _ | _ | |a FZJ-2022-02981 |
| 082 | _ | _ | |a 550 |
| 100 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a High-Performance and Disruptive Computing in Remote Sensing: HDCRS—A new Working Group of the GRSS Earth Science Informatics Technical Committee [Technical Committees] |
| 260 | _ | _ | |a New York, NY |c 2022 |b IEEE |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1661160179_2170 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The High-Performance and Disruptive Computing in Remote Sensing (HDCRS) Working Group (WG) was recently established under the IEEE Geoscience and Remote Sensing Society (GRSS) Earth Science Informatics (ESI) Technical Committee to connect a community of interdisciplinary researchers in remote sensing (RS) who specialize in advanced computing technologies, parallel programming models, and scalable algorithms. HDCRS focuses on three major research topics in the context of RS: 1) supercomputing and distributed computing, 2) specialized hardware computing, and 3) quantum computing (QC). This article presents these computing technologies as they play a major role for the development of RS applications. The HDCRS disseminates information and knowledge through educational events and publication activities which will also be introduced in this article. |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Heras, Dora B. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Wu, Zebin |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Maskey, Manil |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Lopez, Sebastian |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Gawron, Piotr |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Coca, Mihai |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Datcu, Mihai |0 P:(DE-HGF)0 |b 7 |
| 773 | _ | _ | |a 10.1109/MGRS.2022.3145478 |g Vol. 10, no. 2, p. 329 - 345 |0 PERI:(DE-600)2703053-2 |n 2 |p 329 - 345 |t IEEE geoscience and remote sensing magazine |v 10 |y 2022 |x 2168-6831 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/909063/files/Cavallaro_GRSM_Preprint.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:909063 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171343 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 1 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE GEOSC REM SEN M : 2021 |d 2022-11-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-25 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b IEEE GEOSC REM SEN M : 2021 |d 2022-11-25 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|