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The High-Performance and Disruptive Computing in Re-
mote Sensing (HDCRS) Working Group (WG) was recently
established under the IEEE Geoscience and Remote Sensing
Society (GRSS) Earth Science Informatics (ESI) Technical
Committee (TC) to connect a community of interdisciplinary
researchers in Remote Sensing (RS) who are specialized
on advanced computing technologies, parallel programming
models and scalable algorithms. HDCRS focuses on three
major research topics in the context of RS: (1) Supercomputing
and Distributed Computing, (2) Specialized Hardware Com-
puting and (3) Quantum Computing (QC). This article presents
these computing technologies as they play a major role for
the development of RS applications. HDCRS disseminates
information and knowledge through educational events and
publication activities which will also be introduced in this
paper.

Index Terms—High Performance Computing, cloud comput-
ing, graphics processing unit (GPU), field-programmable gate
array, quantum computing, edge computing, blockchain, geo-
science and remote sensing.

I. INTRODUCTION

Remote Sensing (RS) has come a long way since 1858,
when Gaspard-Félix Tournachon captured the first aerial pho-
tograph from a hot air ballon over the Bièvre Valley in
France [1]. At the beginning of 1972, Landsat data kickstarted
the big data era by capturing images of the whole Earth’s
surface every two weeks [2]. The development of artificial
satellites in the latter half of the 20th century allowed RS to
progress to a global scale and monitor the entire planet in
high-resolution, on-demand, and in near real-time.

Since 2008, with the emergence of the free and open data
access policy for Landsat data [3] [4], many governments
and space agencies have opened their archives making large
collections of satellite RS data available to everyone (e.g.,
ESA’s Copernicus [5]). RS was and further is a stimulating
factor in the development of disruptive and High-Performance
Computing (HPC) technologies. An example is the case of
Synthetic Aperture Radar (SAR) image formation. SAR is an
active coherent imaging system operated in the microwave
domain. A SAR system records millions of samples per
second. The transformation of the received echoes, i.e., the

focusing process, requires application of matched filters prin-
cipally involving the computation of Fourier transforms. In the
early 1960’s this a was major big data and HPC challenge
stimulating the use and development of new technologies.
Optical coherent processing was one of the first novelties
at the time that HPC technology used [6]. Further at the
end of 1970’s SAR focusing was one of the applications for
supercomputers. [7] presents the assessment of implementing
a SAR processor on a CRAY-1 S Supercomputer. Today the
implementation of quantum radars [8] and the use of quantum
computers for further progress of the SAR data processing and
analysis is studied.

Other RS big data are generated from a multitude of
sources, including ground and airborne sensors (e.g., un-
manned aerial vehicles (UAVs) [9]), social media, machine to
machine (M2M) communications and crowdsourcing. Mean-
while, planetary-scale applications in earth science and envi-
ronmental studies are further increasing the complexity of RS
data. RS data can therefore be characterized by multi-source,
multi-scale, high-dimensional, dynamic-state and nonlinear
characteristics [10]. Processing such large amounts of complex
data necessitates rapid development in innovative computing
technologies and creating novel tools for addressing data
storage challenges and improving data processing workflows.

An increasing number of research groups have been working
in the field of high performance and cloud computing applied
to RS, especially during the last few years [11][12]. The IEEE
Geoscience and Remote Sensing Society (GRSS) is the right
forum to foster bonds among these researchers and promote
the use of these technologies by an ever-increasing community.
The HDCRS WG was founded with these objectives. With its
dedicated website, HDCRS disseminates information includ-
ing the activities organized by its members. IEEE members
can register as new members using the website.

The first activities of HDCRS were organized in 2021.
These focus mainly on education and research promotion
with the goal of creating a community. The group encourages
members to promote their related initiatives. In particular,
HDCRS organized its first summer school at the University of
Iceland from 31 May to 3 June, 2021. The overall objective of
the school was to give participants a comprehensive overview
of current topics and methods in the field of High-Performance
Computing (HPC), Machine Learning (ML), and QC in RS.
A second objective was to establish a venue for students and
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young professionals to network with senior researchers and
professors who are world-renowned leaders in the field of
RS and work on the interdisciplinary research addressed by
HDCRS.

The first edition took place online due to the pandemic
conditions. Prof. Jón Atli Benediktsson, the rector of the Uni-
versity of Iceland, gave the opening remarks summarizing the
opportunities offered within IEEE GRSS and their connection
with the activities of the working group, which was presented
by one of the chairs, Dr. Gabriele Cavallaro. The given lectures
were organized in three thematic groups:

1) From HPC to Quantum Paradigms in Earth Observation
(EO)

2) Programming Graphics Processing Units (GPUs) and
Accelerators with Directives

3) Scaling machine learning for remote sensing using
Cloud Computing

Out of 180 registrations from all over the world, the
maximum number of 30 attendees were admitted in the Zoom
sessions and received access to computing resources. The rest
attended via YouTube live streams of the Zoom sessions. The
recording of all lectures of the summer school is available on
the GRSS YouTube Channel.

HDCRS was happy to receive very favorable feedback for
the summer school and is looking forward to organizing the
second edition as a physical event at the University of Iceland
with several social activities. Registrations will open on the
HDCRS’s website on 1 March, 2022. It is envisioned that
future editions of the summer school could be moved to other
locations.

HDCRS has also organized two tutorials at the International
Geoscience and Remote Sensing Symposium (IGARSS) con-
ference. The first one was on “Scalable ML with High Per-
formance and Cloud Computing” which provided a complete
overview of supercomputing and cloud computing technolo-
gies for solving RS problems that require fast and highly
scalable methods. The second tutorial “From Big EO Data to
Digital Twins: Hybrid Artificial Intelligence (AI) and Quan-
tum based Paradigms” covered quantum information theory,
quantum algorithms and computers, presented the first results
and analyzed the main perspectives for EO applications.

A special session at the IGARSS 2021 conference was also
organized by HDCRS. Papers in the most advanced areas
exploiting new high-performance and distributed computing
technologies and algorithms to expedite the processing and
analysis of big remote sensing data were collected. They
included:

• Practice and Experience in using Parallel and Scalable
Machine Learning in Remote Sensing from HPC over
Cloud to Quantum Computing [13]

• Comparing Area-based and Feature-based Methods for
Co-registration of Multispectral Bands on GPU [14]

• An FPGA-based Implementation of a Hyperspectral
Anomaly Detection Algorithm for Real-Time Applica-
tions [15]

• Enhancing Large Batch Size Training of Deep Models
for Remote Sensing Applications [16]

• Evolutionary Optimization of Neural Architectures in
Remote Sensing Classification Problems [17]

HDCRS will organize new special sessions on different
topics in the future editions of IGARSS.

II. HDRCS RESEARCH TOPICS

There is an increasing number of applications that benefit
from the amount of data acquired by the most affordable
and wide available RS sensors. Some of them require to be
processed in real-time and most of them are complex, thus
requiring high computational power. This requirement makes
necessary the use of innovative computational approaches,
from HPC platforms such as clusters, grids or clouds to
accelerators such as GPUs or Field-Programmable Gate Arrays
(FPGAs) or QC solutions, among others. The more adequate
computing platform depends on the problem being solved
and also on the environment where the problem needs to
be solved. In some cases, for example, transferring data to
supercomputers makes sense. In other cases, the problem is
better to be solved in situ using commodity hardware. In this
section, a perspective of the potential and emerging challenges
of applying HPC paradigms to remote sensing problems is
offered.

To solve a computational task, the first step is to split it into
instructions that a processor can execute. The main objective
is to process these instructions as fast as possible. This can
be achieved in three different ways: to make the processor
a. work harder (increase the raw power of the hardware,
i.e., its clock speed on a single core, also referred as single-
thread performance), b. work smarter (optimizing the task, use
instruction level parallelism and exploit caching, etc.), or c.
work in a team (more cores working in concert). While the
first two strategies formed the basis of the main computing
trend in the first fifty years of hardware computing the latter
is currently the main trend.

The semiconductor industry have been shrinking the tech-
nology to try to follow Moore’s Law: “... the number of tran-
sistors that can be inexpensively placed on integrated circuits
is increasing exponentially, doubling approximately every two
years ...” (Gordon Moore, 1965 [18]). The result was that by
doubling the density of semiconductor over integrated circuits,
the single-thread performance was constantly increasing. This
trend was also identified by Robert H. Dennard, who in 1974
predicted that the power density (i.e., power dissipated per
unit area) of transistors will remain constant while their size
will continue to decrease [19] (i.e., as the physical parameters
of transistors reduce they can be operated at lower voltage
and thus at lower power). This means that it was possible
to increase constantly the single-thread performance without
raising the power consumption.

Dennard scaling (also knows as MOSFET scaling) started
to reach its physical limits around 2004 to an extent that the
voltage could not be scaled down as much as the gate’s length
of the transistor. This along with a rise in leakage current
resulted in increased power density, rather than a constant
power density (i.e., more heat generated which has to be dis-
sipated through cooling solutions, as increase in temperature
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Fig. 1. The speakers of the 2021 HDCRS Summer School: Gabriele Cavallaro, Jón Atli Benediktsson, Mihai Datcu, Sergio Bernabé Garcı́a, Carlos Garcı́a
Sánchez, Manil Maskey, Iksha Gurung, Muthukumaran Ramasubramanian, Shubhankar Gahlot and Drew Bollinger

beyond a certain level results in unreliable functionality of the
chip). As a consequence, since early 2000, the single-thread
performance improvements started plateauing as shown in
Figure 2. This resulted in an unique situation in which Moore’s
law [18] was still holding, but the computing performance in
return was no longer substantial as before [20].

Novel hardware architectures along with shifts in code
paradigms became the focus of the industry in order to
continue the same trends. Expanding the number of logical
cores in Central Processing Units (CPUs) and shifting towards
accelerators and co-processors which work on lower frequen-
cies but have considerably higher amount of cores than CPUs
proved to be the most significant move. The result was a main-
stream shift of focus towards parallelization. Heterogeneous
computing unifying different hardware architectures emerged
as the most effective way to keep up with the need for ever
higher computing performance.

In this context, the responsibility of reaching better compu-
tational performance is outsourced to software developers and
programmers (i.e., algorithms need to be optimized to fully
exploit new parallel computing environments).

Fig. 2. 42 Years of Microprocessor Trend Data [21]. Orange points: Moore’s
Law trend. Around 2003, the clock speed curve (blue points: single thread
performance) starts to flatten (i.e., Dennard scaling breakdown). Green and
red points: immediate consequences of Dennard scaling breakdown; Black
points: from 2003 the era of parallelism begins (i.e., obtain processing speed
up with many cores).

In general, the development of parallel and scalable codes
for complex algorithms is complicated and error-prone. It usu-
ally involves handling data slicing and distribution, task parti-
tion, message passing among distributed memory spaces and
shared memory management for multicores, synchronization
and communication with low-level APIs [22]. Nevertheless, as
it was already shown ten years ago by Lee et al. [23], HPC
and parallel programming are the only effective solutions that
can address the computational challenges of data-intensive RS
applications.

III. RESEARCH TOPICS

The essential concepts and principles, and the key tech-
niques related to different computing technologies are elabo-
rated in detail in this section. It describes how they enhance
RS applications and provides future perspectives in the context
of Earth Observation (EO).

A. Supercomputing

The action of solving processing tasks on a supercom-
puter is widely termed “supercomputing” and is synonymous
with HPC. HPC is a multidisciplinary field of research that
combines hardware technologies and architecture, operating
systems, programming tools, software, and end-user problems
and algorithms. It engages a class of electronic digital ma-
chines referred to as “supercomputers” to perform a wide array
of computational problems or “applications” (alternatively
“workloads”) as fast as is possible. A supercomputer is a
mixture of shared-memory and distributed-memory systems.
While in a shared-memory system (i.e., desktop computer,
laptop) a number of CPU cores have access to a common,
shared physical address space, in a distributed-memory system
each process is connected to exclusive local memory (i.e., no
other process has direct access to it).

Supercomputers have been used in various fields of research
since the 1980s [24]. At that time, a vector architecture was
the mainstream and developers could improve the performance
of programs by exploiting vector instructions. A vector in-
struction is a Single Instruction Multiple Data (SIMD) which
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refers to vector registers where multiple data resides. The
first commercial supercomputer (i.e., Cray-1 [25]) included
8 registers, where each was a vector of 64 double-precision
floating point numbers.

Single-thread exponential speed growth was the driving
force of HPC in the first 25 years [21]. At first, each
manufacturer of a distributed-memory system had its own
library and set of functions that could do simple point-to-point
communication as well as collective communication patterns
like broadcasting. To simplify programming in network en-
vironments and to realize component-based software archi-
tectures, many models and portable libraries have emerged
as possible standards (i.e., Distributed Component Object
Model (DCOM) [26], Parallel Virtual Machine (PVM) [27]
and Message Passing Interface (MPI) [28], etc.).

MPI was released in 1994 and developed as a standard
library of defined message-passing. Since then, MPI became
extremely successful and started to be adopted by many
different scientific applications for distributing their computa-
tions on distribute-memory clusters (e.g., hydrogeology, traffic
simulation, weather forecast, etc. [29]). MPI became the de
facto standard for parallel scientific computing and it is the
most mature methods currently used in parallel programming.

Supercomputers have been widely used in RS applica-
tions to accelerate and scale the process of image mosaick-
ing [30] [31], classification [32] [33] [34] [35] [36] [37],
object detection [38] [39], clustering [40] [41] [42], inter-
band registration [43], super-resolution [44], data fusion [16],
compression [45], feature selection/extraction [46] [47] [48],
spectral unmixing [49], data assimilation [50] and scalable
processing workflows [51] [52] [53] [54] [55] [56]. In the
context of HPC, there were also important efforts in academic
journals and conferences launching multiple special issues
devoted to the processing and analysis of RS data [57], [58],
[59], [60].

The next generation of supercomputers (i.e., Exascale su-
pecomputers) will be used to model and simulate more
complex and dynamic systems in higher resolution and with
unprecedented fidelity (e.g., biological systems, molecular
interactions of viruses, material design, etc.). In the context
of EO, Exascale supecomputers will enable the development
of a high precision digital model of the Earth (i.e., Destination
Earth [61]). This will help analyze with very high precision the
effects of the climate change together with possible adaptation
and mitigation strategies (e.g., to predict major environmental
degradation and natural disasters with unprecedented fidelity
and reliability).

B. Cloud Computing

Cloud computing is an overarching term that describes
a category of on-demand computing services [62]. These
services were initially offered by commercial companies such
as Amazon, Microsoft, and Google. Now, there are many
new commercial and public cloud computing providers. The
underlying principle behind cloud computing is the idea of
providing access to storage, compute, and software “as a
service” that may not be on premise. Common characteristics

of cloud computing include: (i) elasticity: defined as the ability
to scale resources both up and down as needed, (ii) reliability:
implies that the service is available and works as intended, (iii)
pay-as-you-go: users only pay for what they use, (iv) resource
pooling: allows cloud provider to serve its users in a multi-
tenant model, and (v) minimal management effort: users can
use and procure cloud service without much difficulty.

The concept of cloud computing is not new. Grid computing
[63], which was introduced in the 1990s, included a type of
parallel and distributed system that enabled the sharing of geo-
graphically distributed resources. The power of grid computing
was enabled by the ability to dynamically scale up and down
the resources based on the user’s need. The concept of grid
computing evolved to solve large-scale processing workloads
that required more than a single computer. Cloud computing
automated some of the nuances of grid computing, specifically
in the area of virtualization and on-demand scaling. Compared
to the grid computing approach, which requires allocation of
resources in advance, cloud computing is more attractive since
real time provisioning of resources is possible.

As the cloud computing has advanced, main services offered
by most providers have evolved into three classes, based on
the abstraction level of the capability that they provide: (i)
Infrastructure as a Service (IaaS), (ii) Platform as a Service
(PaaS), and (iii) Software as a Service (SaaS) [62].

Figure 3 depicts the three layers, which shows the stacked
organization from the infrastructure to the application layer.
Each higher layer can utilize the services from the bottom
layers.

Fig. 3. Cloud services - a layered view.

IaaS uses virtualization technology to deliver computation,
storage, and networking on demand. Cloud providers enable
on-demand provisioning of servers which can be used to
develop applications. Users of IaaS will require system ad-
ministration knowledge and usually have full control over the
virtualized machine. Amazon Elastic Compute Cloud (EC2,
http://aws.amazon.com/ec2/) is an example of IaaS.

PaaS is an environment where users can create customized
solutions using tools and services that the platform provides.
This layer is at a higher level of abstraction which makes
a cloud easily programmable. Often a PaaS tool is a fully
integrated development environment–all the tools and services
are part of the PaaS service, which supports a complete
lifecycle of building and deploying applications. Google App
Engine is an example of PaaS.

SaaS is the complete cloud computing service model where
the computing hardware, software, and a particular solution
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itself, are provided by a vendor as a complete service offering.
Services provided by this layer can be accessed by end users
through browsers. For this reason, most users are increasingly
shifting to on-line software services. The ArcGIS implemen-
tation on the cloud is an example of Software as a Service
(SaaS).

With the advances in sensor technology and highly com-
petitive and vibrant space industry, the RS data is being
collected at massive scale. Moreover, there are upcoming
missions with higher spatial, spectral, and temporal resolution
which poses challenges in not only storing the data but also
processing needs. To address these challenges, many agencies
have already explored cloud computing as a viable solution.
Cloud computing provides elasticity in storage and computing
that traditional data centers cannot support. Cloud computing
also facilitates large-scale scientific processing enabled by the
cloud-native services that are collocated with the data. During
last two decades, there has been accelerated adoption of cloud
computing within RS community. The trend of this adoption
can be observed with the number of publications by major RS
research publishers that are related to cloud computing.

The National Aeronautics and Space Administration
(NASA) has started migration of its Earth science data to
the cloud computing environment 1 to support the large data
volume missions that will be launched in near future. Towards
that end, NASA has developed a generalized cloud-native
ingest archive pipeline called Cumulus [64]. In the mean-
time, there are parallel efforts to train scientists to perform
scientific analysis in cloud computing environments, since it
is more economical to perform analysis in the cloud than
downloading a large amount of data from the cloud to on-
premise. Hence, cloud computing has also emerged as the
analysis and processing platform for many applications [65]. In
RS, there are many examples of data processing frameworks
developed in cloud computing [66][67][68][69][70]. In fact,
many new RS data products are being generated using cloud
computing 2. Cloud computing has also advanced data storage
and access techniques of RS datasets. Such advances have
allowed dynamic data visualization and analysis which are
otherwise not possible [71][72]. Finally, development of end-
to-end RS based situational awareness tools [73] are enabled
by cloud-native services that are capable of delivering reliable
and on-demand needs.

With cloud computing, any researcher around the world is
able to use a browser and open RS data to perform scientific
research. RS has specially benefited from cloud computing
and many existing legacy applications have the potential to
adapt to and take advantage of cloud capabilities. However,
there are challenges in adopting the cloud. These challenges
include security, evolving cloud-native services, multi-cloud
portability, and learning curve required to perform science on
cloud.

1https://earthdata.nasa.gov/eosdis/cloud-evolution
2https://earthdata.nasa.gov/learn/articles/hls-cloud-efforts

C. Specialized Hardware Computing

Numerous research efforts have been directed towards the
incorporation of specialized hardware for accelerating RS-
related applications during the last decade [74], [75], [76].
The emergence of specialized hardware devices such as Field-
Programmable Gate Arrays (FPGAs) [77] or GPUs [78] ex-
hibited the potential to bridge the gap towards on-board and
fast on-the-ground analysis of RS data. The small size and
relatively low cost of these devices as compared to clusters or
networks of computers makes them very appealing for parallel
computing in general and for RS in particular. GPUs can
also significantly increase the computational power of cluster-
based systems and, nowadays, they can be found in the most
powerful non-distributed computer systems in the world 3. In
the case of FPGAs, the main advantage is the configurability,
although they are generally more expensive than GPUs (see
Figure 4).

FPGAs have consolidated as the standard choice for on-
board RS image processing due to their programmable nature,
dynamic reconfiguration capabilities, smaller size, weight and
power consumption, as well as for the existence of radiation-
hardened and radiation-tolerant FPGAs [79], [80], [81], [82].
However, these devices are more expensive, physically larger
and are often technology generations behind in both perfor-
mance and functionality than their commercial counterparts
[79], [80]. For this reason, the current trend for small satellites
is to use Commercial Off-The-Shelf (COTS) onboard elec-
tronic devices. Moreover, commercial FPGAs based on Static
Random Access Memory (SRAM) are attracting attention
because of their reconfiguration capabilities and low cost com-
pared to Application Specific Integrated Circuits (ASICs) [83].
Nonetheless, the use of COTS devices implies the necessity
of applying mitigation techniques in order to increase the
robustness of the application performance in environments ex-
posed to radiation. In this sense, different Radiation Hardened
By Design (RHBD) strategies have been developed over the
years to protect the FPGA-based designs against radiation [84],
[85], [86], such as Dual Modular Redundancy (DMR) schemes
for detecting errors and Triple Modular Redundancy (TMR)
designs for error masking.

Although recent literature features plenty of works related to
the utilization of FPGA devices for real-time onboard process-
ing (including classification, detection, and spectral unmixing
[88], [89] among many other processes such as hyperspectral
image classification [90], [91],) the more significant advances
have been achieved in the field of on-board compression.
In fact, developing efficient compression solutions for space
supposes a challenge. The employed algorithms must achieve
the goal in terms of compression ratio while at the same
time they should have low complexity to be executed on
the available hardware resources on-board satellites and the
required timing performance to meet mission requirements.

There is an immense quantity of contributions to the field of
FPGA implementations for on-board data and image compres-
sion, both on COTS and RHBD devices. Of particular focus
are those that follow the compression techniques proposed by

3http://top500.org
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Fig. 4. Programmability versus performance tradeoff of computing devices [87].

the Consultative Committee for Space Data Systems (CCSDS),
an international organization comprised by the main space
agencies in the world to define a common way for developing
space data and information systems. Within these implemen-
tations, it is worth highlighting the works that implement
the CCSDS 121.0-B-2 data compression standard [92], [93],
which is based on Rice coding, onto space-qualified FPGAs,
as well as those that implement the CCSDS 123.0-B-1 lossless
hyperspectral image compression standard both in COTS and
RHBD FPGAs [94], [95], [96], [97], [82].

Although GPUs had traditionally been limited to graphical
operations, during the last decades they progressively evolved
into a highly parallel, multithreaded, many-core processors
with tremendous computational speed and very high memory
bandwidth [98]. In GPUs, more transistors are devoted to data
processing rather than to data caching and flow control. With
the release of NVidia CUDA 4 in 2007 and OpenCL [99] in
2009, the programming model for GPU was greatly simplified
introducing the possibility of including GPUs in many science
and engineering applications. CUDA is an extension to the
C programming language offering programming capabilities
of GPUs for general-purpose computation (GPGPU). OpenCL
was developed by a consortium and released in 2009. It aims
at supporting more hardware and to provide a standard for
general purpose parallel programming across CPUs, GPUs,
and other processors [99]. Nowadays, the combined features of
general-purpose supercomputing, high parallelism, high mem-
ory bandwidth and low cost makes a GPU-based computer an
appealing alternative to a massively parallel system made up
of only CPUs [100], [75].

The first developments in CUDA presented highly coupled
and non-reusable GPU parallel strategies. Many efforts were
made for developing parallel programming templates [101]
and libraries 5 to simplify the programming task. The ex-
traordinary evolution in this aspect during the last few years
has motivated the extended use of GPUs for accelerating
many different RS and, in particular, hyperspectral imaging-
related tasks [74], [100], [75], [102], [103], [76]. These include

4http://developer.nvidia.com
5https://docs.nvidia.com/cuda/

registration [104], [14], segmentation [105], classification [76]
or change detection [106], among others.

Based on the capability to execute thousands of threads in
parallel, the primitives such as the inner and outer products
can perform better in the CUDA platform, so ML and, in
particular, deep learning algorithms, formed by these primi-
tives benefit from the computational capacity of CUDA [103].
For example, The CNN convolution, pooling, and activation
calculation operations are readily portable to GPUs [107]. In
this context, many tools have been developed to automatize
the programming and execution of deep learning algorithms in
GPU-based architectures among which TensorFlow is the most
popular option [108]. This has contributed to the extensive use
of GPUs for deep learning applied to RS for many operations
[109], [110] including, for example, object detection [111] or
classification [112] [113] [114] [115], [116].

As explained above, FPGAs and GPUs clearly help in
processing RS data by accelerating computations and provid-
ing solutions for time critical applications on-board and on-
ground, which opens a wide variety of use cases related to
Earth monitoring. Benefiting from them requires the careful
selection of the algorithms which better adapt to the FPGA
and GPU architectures. For the particular case of GPUs, many
papers present algorithms and techniques adapted to it, as
mentioned in the previous paragraphs, but GPUs are not being
extensively exploited yet. More research is required for the
development of new techniques, algorithms and applications
exploiting all the potential for execution time improvement
that the wide variety of systems using GPUs offer.

D. Edge Computing

With the rapid advance in Internet of Things (IoT) technol-
ogy, the number of network edge devices and the amount of
data generated by edge devices have shown explosive growth
in recent years. Due to the limited network communication
capacity, the centralized processing mode in cloud computing
may not be able to process massive data efficiently and quickly.

In 2013, the concept of edge computing was firstly men-
tioned by Ryan Lamothe of Pacific Northwest National Labo-
ratory. In 2016, Weisong Shi proposed that edge computing
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refers to the technologies computing at the edge of the
network. This includes the processing of downstream data and
upstream data by cloud services and IoT services, respectively
[117].

Generally, edge computing has two operation modes: 1)
Binary offloading: A deeply integrated or comparatively sim-
ple computing task cannot be divided and has to run either
directly on the edge device or offloaded to the cloud. 2)
Partial offloading: Part of the tasks originally located in the
cloud data center are allowed to be offloaded to the edge
of the network. Through the two operation modes, edge
computing can flexibly adjust the load of cloud and edge
servers via offloading so as to realize the requirements of
massive connection and low response delay of IoT devices.
In certain cases, users can save more than 30% of the cost
of computation, storage, and bandwidth. Mobile edge servers
can also control the proximity between edge devices and the
terminal users, so that they can track real-time information of
the terminal users such as action, location and environment.
In addition, mobile edge computing (MEC) can protect the
privacy and enhance the security of mobile applications [118].

Benefiting from the advantages on low latency, low power
and strong privacy, edge computing has attracted wide atten-
tion from researchers and it has been widely used in industrial
fields such as autonomous driving environment monitoring,
intelligent home virtual enhancement, medical and health in-
dustry production, etc. For example, in the field of autonomous
driving, a car does not need to send all the generated data to the
cloud for processing. Most of the data is stored and calculated
at the edge nodes (i.e., the car itself).

Although it is effective in reducing computing delay and
power consumption, edge computing is also facing new chal-
lenges. First, limited by the computing capacity of edge
devices, the accuracy of calculation results needs to be further
improved. Second, most of the devices in edge computing
are heterogeneous computing platforms, and the operating
environment and data on each device are quite different.
Therefore, it is challenging to deploy user applications in
edge computing scenarios. In addition, as of yet, there are no
comprehensive and uniform benchmarks for evaluating system
performance.

Edge computing has been widely used in various fields
of RS. Since the computing capacity of most edge devices
is limited, the most common use of edge computing in RS
applications is data preprocessing, which is able to mitigate the
transmission pressure and decrease the computing cost in the
cloud. In [119], a multiple industrial IoT system architecture
based on unmanned aerial vehicles (UAVs) is proposed, in
which the RS images collected by sensors in the industrial
IoT is directly transmitted to the UAVs for processing. Based
on the RS image analysis and neural computation model, the
authors in [120] built a forest ecotourism evaluation scheme
and designed a cloud-based mobile edge computing model
to construct efficient prediction scenarios [120]. In [121], the
image recognition performance of hierarchical discriminant
analysis (HDA) algorithm was implemented by combining
edge computing environment with (HDA) algorithm for early
warning of mountain fire.

With the increasing applications of edge computing in RS,
there are many aspects that need to be further researched.
Firstly, the performance of edge equipment, the ability to col-
lect RS information and data processing need to be strenght-
ened so as to promote the accuracy of edge calculation result.
Secondly, cloud-edge offloading strategies for RS need to be
proposed to allocate computing resources more reasonably, so
as to reduce computing delay and power consumption in RS
applications.

E. Quantum Computing

At the beginning of the 1980’s Richard Feynman [122]
observed that numerical simulation of quantum mechanical
systems requires an exponentially-growing – with the quantum
mechanical system dimension – amount of such computational
resources as CPU time and memory. This observation has led
to a conclusion that for the simulation of quantum mechanical
systems one should employ easily controllable quantum de-
vices whose complexity can grow sub-exponentially with the
growth of the quantum mechanical system dimension. Such
easily controllable device was named by Feynman a quantum
computer. The first formal formulation of Quantum Computing
(QC) was proposed in 1985 by David Deutsch [123]. In 1992
Deutsch and Richard Jozsa proposed the first quantum algo-
rithm that could outperform the classical counterpart [124]. In
the following years many other important quantum algorithms
were proposed such as the Shor’s algorithm for factoring
integers [125], [126], Grover’s search algorithm [127] and the
Harrow-Hassidim-Lloyd algorithm for solving a linear system
of equations [128].

Quantum computers can be understood as being analog and
digital at the same time. Analog – because the state space
of quantum devices during the computation process can be
described by a set of continuous variables, digital – because
the measurement outcome from a quantum computer can be
expressed as a binary string. Quantum computers, as most of
analog computers, are prone to errors. Due to the uncontrolled
interaction with the environment a state of a quantum computer
can become distorted during the computation process. This
phenomenon is called quantum decoherence [129]. Fortu-
nately, the influence of decoherence can be reduced by the
use of quantum error correcting codes. These codes employ
multiple physical qubits to form a single logical qubit [130]
and use the digital aspect of the quantum measurement to
correct quantum errors.

Currently, quantum computers have reached the so called
Near Intermediate-Scale Quantum era [131]. This means that
they consist of about a hundred noisy qubits and therefore
classical computers are unable to simulate them efficiently.
Simultaneously it is only possible to perform short quantum
programs before the quantum state becomes so distorted that
it is no longer useful. Hence, it is impossible to execute
such algorithms as Shors’ and Grover’s using current quantum
hardware.

Currently, two paradigms of QC are implemented in the
hardware. The first one is the so called universal gate-based
QC and the second one is quantum annealing. Gate-based
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quantum computing is currently mostly used to execute vari-
ational quantum computing algorithms [132] – a class of
algorithms that use quantum computer as a co-processor to
execute computationally costly subroutines in which a value
of a quantum observable for a particular state generated by
a parametrized quantum circuit is estimated. In variational
quantum algorithms the parameters of the quantum circuit are
optimized in an iterative process using a classical optimization
technique. Variational quantum algorithms find applications
in combinatorial optimization problems, finding low-energy
states of molecules and in ML.

Quantum annealing [133] is a heuristic computation method
that implements approximately the adiabatic quantum com-
puting model. This model allows finding good approximate
solutions to Quadratic Unconstrained Binary Optimization
problems [134]. This is a class of computationally hard
problems that find applications in logistics, scheduling, image
processing and ML among others.

Even though the quantum advantage – solving a particular
computational task impossible to solve classically by way of
using quantum computer – was claimed by Google [135] in
2019, currently existing quantum computers have no practical
applications yet. Fortunately, the field is progressing fast both
in terms of algorithm and hardware development.

Quantum Machine Learning (QML) [136], [137] is a term
that can encapsulate both the techniques of using quantum
computers as ML subroutines during training and inference
or using quantum computers to help training of classical
classifiers. QML is currently a very active area of research
that, hopefully, could allow to build better models for a variety
of ML tasks.

In the field of RS there are particular applications of QC that
were developed recently. For example in [138], [139], [140],
[141] QML algorithms such as the Support Vector Machine
(SVM) and neural networks are applied for classification of
multispectral images. In [142] the authors use a quantum
annealer to perform three following tasks on hyperspectral
data: classification using a variant of SVM, band selection
for classification and boosting of classical classifiers. Outside
the applications to hyperspectral imaging the authors of [143]
proposed a classification method for Synthetic Aperture Radar
images using a hybrid quantum-classical neural network.

Today the European Space Agency (ESA) considers quan-
tum computing and AI taking the centre stage for the imple-
mentation of the Digital Twin Earth (DTE) 6. While quantum
computing technology concepts are broadening and growing
in the qubit capacities, the applications in RS and QML may
have unexpected results. The analysis of the data complexity,
and the identification of optimal data embedding may open
novel perspectives. For example signatures of satellite images
could be encoded as quantum states and transformed using
for instance quantum kernels for classification. It might be
feasible to encode a time varying sequence of EO images on
a quantum state and analyse it using a quantum computer in
order to understand the change of the Earth surface. But to

6ESA ϕ-week, 2020: https://www.esa.int/Applications/Observing the
Earth/Digital Twin Earth quantum computing and AI take centre stage
at ESA s Ph-week

achieve that, more efforts in both the theoretical development
of quantum algorithms and quantum hardware design and pro-
duction will have to be made in order to push the boundaries
of what is possible to achieve with quantum computing. An
important aspect is the close collaboration with the quantum
computer developers and providing appropriate requirements
(e.g., European Quantum Industry Consortium (QuIC) 7).

F. Blockchain

Open data became a significant vector in all services con-
sumed nowadays, as enormous quantity of data are quickly
accessible. Most of the times, distributing and retrieving
data is drained through mediators which impose control and
evaluation policies for reliability and integrity of the data.
As connections between data owners and data consumers are
generally maintained through a central authority for practical
goals, limiting the actions of the users, intermediary technolo-
gies are necessary to ensure trust among participants, data
availability, data validity, and data integrity, all in a transparent
way.

The advent of technological progress and evolution in open-
source and Distributed Ledger Technologies (DLT) demon-
strated that it is possible to develop systems that prioritize
individual jurisdiction over centralized control. Distributed
ledgers are collections of replicated, shared, and synchronized
digital records that are stored across multiple geographically
disseminated sites. A blockchain, an example of DLT, is
fundamentally an append-only permanent verifiable data struc-
ture maintained by a set of nodes that do not fully trust
each other. These nodes comply on a set of global states
for an ordered collection of blocks, each containing multiple
verification records (i.e., transactions). Each block is linked in
a chain of blocks where the subsequent block has additionally
a verification record of the previous block (i.e., a unique
hash fingerprint). In this way, it is impossible to add new
information to older blocks in the chain without changing the
subsequent blocks. Each node keeps replicas of the data and
grants on an execution order, thus producing an immutable
log of ordered transactions within a distributed transaction
management context.

Blockchains have manifested great promise in several fields
like cryptocurrency (Bitcoin [144], Ethereum [145], etc.),
governance, land registration, justice, identity management,
asset-tracking, IoT to name a few, materializing in large-
scale adoption as the result of solving limitations in previous
systems. The blockchain technology also started to evolve
within the new space sector (i.e., Space 4.0) over a range
of potential applications, from satellite communications to
procurement. In a whitepaper, ESA accentuated the relevance
of assimilating blockchain in RS applications [146], supporting
action automations through smart contracts and transfer of
value without a pivotal authority. Data gathered via close-
range sensors, e.g., IoT sensor networks or personal drones can
massively enrich EO applications in consistency and accuracy.

7European Quantum Industry Consortium (QuIC): https://qt.eu/
about-quantum-flagship/the-quantum-flagship-community/quic/
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Data owners can keep ownership providing reliability through
a blockchain solution.

Due to verifiable and immutable nature of blockchain tech-
nology, it can be used as a distributed database of digital
fingerprints (e.g., mapping, cadastre and land registration
[147], sharing continuously updated ML models [148], etc.)
As corruption can be a big challenge within administrative
systems, registration of land and real-estate ownership using
blockchain enhances transparency and accountability, bringing
actors in control of their own data. Enormous repositories of
data are transformed in intrinsically public open data by adopt-
ing blockchain and related technologies like IPFS [149], where
no one controls data, anyone can access data, and anyone can
audit the entire history of inputs. Novel blockchain protocols
can also be used to precisely map physical world events in a
temporal progression. For instance, Crypto-Spatial Coordinate
(CSC) is an open and interoperable standard for location in
Ethereum smart contracts. FOAM [150] is a CSC blockchain
protocol that preserves geo-spatial data by validating proof of
location associated with the entry’s specific time.

Blockchain technology brings important contributions in
process management within complex systems, offering capa-
bilities of managing massive patterns of transactions in any
combination of two entities, human and device. SpaceChain
builds an open source satellite network [151] in which satel-
lites incorporate blockchain as an operating system and inter-
face for decentralized applications in order to permit individu-
als to work on collaborative projects, with smart contracts on
a space-based computing platform.

Blockchain can improve space communications and nav-
igation, where risk of transmission disruption can be elim-
inated by developing a decentralized, secure, and cognitive
networking and computing infrastructure for deep space ex-
ploration [152]. A decentralized schema for verifying satellite
locations in time, through a type of proof-of-location protocol
is proposed in [153]. The intent in using a permissioned
blockchain is to facilitate scalability and trustless coopera-
tion between satellite operators. Deployment and operation
of small satellite constellations may encounter obstacles as
satellite communications can be significantly delayed. In this
case, occasionally, cryptographically-secure telemetry-based
challenges are completed by satellites in order to verify the
correctness of each other’s position [154].

Blockchain solution brings advantageous capabilities in data
traceability and data reproducibility. A secure way of tracking
down the changes made to the source data of Sentinel-2
satellite is considered in [155]. The author proposed a system
that captures each modification made to the original data
set with the aim of being able to perform trace back and
intermediate verification. In this design, data storage and data
degradation problems still exist.

The synergy between blockchain and RS technologies is still
fragile and sometimes divergent, but dynamics of technologi-
cal interaction sustains an evolving symbiosis and finds RS use
cases in space asset tracking [156], space communications as
well as precision agriculture [157] among others. Blockchain-
based RS data sharing model seems to be an applicable service
that generates properties like immutability, decentralization,

security, credibility and collective maintenance, indispensable
in communications between RS actors.

IV. CONCLUSION

As the availability of sensors producing high amounts of
RS data has increased, new applications of RS have emerged.
The requirement of rapid and effective solutions for the
processiong of this massive data has led to the extended use
of parallel execution. This paper introduced HDCRS, which is
a working group of the IEEE GRSS founded at the beginning
of 2021 with the aim of promoting research, education and
job opportunities in the interdisciplinary field of RS and high-
performance and disruptive computing. The key technologies
involved in RS parallel computation – in particular super-
computing, cloud computing, specialized hardware computing,
quantum computing, edge computing and blockchain – are also
presented. The most recent literature shows that new research
is rapidly maturing at the intersection of the very different
disciplines of RS and high performance computing.
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