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Abstract—The increasing availability of quantum computers
motivates researching their potential capabilities in enhancing
the performance of data analysis algorithms. Similarly as in
other research communities, also in Remote Sensing (RS) it is
not yet defined how its applications can benefit from the usage
of quantum computing. This paper proposes a formulation of
the Support Vector Regression (SVR) algorithm that can be
executed by D-Wave quantum computers. Specifically, the SVR
is mapped to a Quadratic Unconstrained Binary Optimization
(QUBO) optimization problem that is solved with Quantum
Annealing (QA). The algorithm is tested on two different types
of computing environments offered by D-Wave: The Advantage
system, which directly embeds the problem into the Quantum
Processing Unit (QPU), and a Hybrid solver that employs both
classical and quantum computing resources. For the evaluation,
we considered a biophysical variable estimation problem with RS
data. The experimental results show that the proposed quantum
SVR implementation can achieve comparable or in some cases
better results than the classical implementation. This work is
one of the first attempts to provide insight into how QA could
be exploited and integrated in future RS workflows based on
Machine Learning (ML) algorithms.

Index Terms—Support vector regression, quantum computing,
quantum annealing, quantum machine learning, remote sensing

I. INTRODUCTION

EGRESSION analysis is a statistical process whose

objective is to find the relationship between a set of
independent variables {x} and a dependent variable y [1]. It
holds an important role in many different applications such as
financial forecasting [2], geomagnetic data reconstruction [3],
marketing, sociology, epidemiology and risk analysis [4]. In
the field of RS, regression analysis has been applied in many
different applications [5], [6].

In the context of Quantum Machine Learning (QML) [7],
[8] only few works have already addressed regression analysis
problems. For instance, in [9] was proposed a quantum ver-
sion of a linear regression algorithm, whereas [10] presented
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a quantum implementation of a ridge regression algorithm.
Among the different paradigms of Quantum Computing (QC),
QA has recently provided promising results in diverse machine
learning applications [11], [12]. QA is a metaheuristic for solv-
ing combinatorial optimization problems and was theoretically
formulated in [13] and [14]. QA is closely related to Adiabatic
Quantum Computing (AQC) [15] which was shown to be
polinomially equivalent to the universal gate-based model, i.e.,
a different paradigm of QC [16]. However, QA can only solve
a specific class of problems and therefore the redefinition of
ML algorithms in a suitable format is one of the central design
challenges when working with QA-enhanced ML models [17].
This work presents an implementation of the Support Vector
Regression (SVR) [18] algorithm that uses QA for solving
the optimization problem related to the training phase of
the SVR algorithm. Previous works tried to apply QA to
optimize the training procedure of a Support Vector Machine
for classification tasks [19].

A similar implementation of QA-optimized SVR algorithm
was proposed for facial landmarks detection [20]. Specifically,
our implementation uses a similar workflow for constructing
the QUBO, but the mathematical formulation presents some
differences in the encoding equations and constraints enforce-
ment procedure (section II). Additionally, in this work we
propose 6 different methods to combine the solutions returned
by the annealer when running the problem on the Advantage
system (section II). Moreover, our implementation was tested
on both Hybrid and direct QPU solvers, whereas [20] tested the
Quantum Support Vector Regression (QSVR) only on Hybrid
solvers. This work focuses on bio-physical parameter estima-
tion related to chlorophyll concentration in water [21], [22],
[23]. The implementation proposed was tested on a synthetic
and a real RS dataset related to chlorophyll concentration in
water. The quantum system used in the experiments was pro-
vided by the company D-wave. Specifically, the experimental
validation was conducted on the D-wave Advantage_system4.1
solver and the hybrid_binary_quadratic_model_version2 hy-
brid solver. The access to such computational resources was
provided through the D-wave Leap cloud service. The purpose
of this work is to investigate how QA could improve existing
machine learning frameworks for RS applications. The paper
is organized as follows: section II provides a description of
how QA is applied to the optimization of the SVR training,
in section III and IV are described the datasets used and the
experimental analysis that was conducted, respectively, and
section V the main conclusions are discussed.



II. QA-BASED IMPLEMENTATION OF SUPPORT VECTOR
REGRESSION

A. Support Vector Regression

The mathematical formulation of the e-insentive SVR is now
briefly described. Let T = {(x,Yn),n = 0,..., N—1} be the
dataset used for the training phase constituted by N training
samples. Each of such samples is made by a feature vector
x,, € R?, where d is the dimension of the feature space, and a
target value y,, € R. It can be shown, with some mathematical
manipulation, that the training phase amounts to the solving
of the following constrained optimization problem:
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In the optimization problem, the terms a@ = {«a, : n =

0,...,.N—1}and & = {&, : n =0,...,N — 1} are the
variables with respect to which the problem is optimized.
The terms C' and e are parameters related to the SVR that
controls the overfitting and the error sensitivity, respectively.
After finding the values of & and & the prediction function is
defined as:

N
y(x) = Z(an — Gn)k(x,x,) + b 3)

The value of b can be deducted from any data point for which
0<a, <Cor0<d&, <C using the formula:

N
b=ty —€— Y (0m — Gm)k(Xn, Xpm) (4)
m=1

To obtain a more robust estimation of b it is preferable,
however, to average the result from multiple data points [24]
The term k(x,,X,,) indicates the kernel function, in our
experiments a Radial Basis Function (RBF) kernel, whose
formula is given by: e(=71%2=xnll*) has been employed. RBF
kernels are one of the most popular choices for SVM kernels

along with polynomial and sigmoid kernels [24].

B. QUBO probelm formulation

In order to be processed by the Quantum Annealer, a
problem must be in the form of either a Ising Spin problem
[25] or a QUBO. The models are both binary and their
difference is in the variables used for the formulation of
problem instances: {—1,1} for Ising spin models and {0, 1}

for QUBO. For our purposes the original optimization problem
related to the SVR was turned into a QUBO problem. Such a
problem can be expressed according to the following formula:

E =Y a,Qija;, 5)
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The terms a; € {0,1} are the binary variables of the
QUBO problem and Q is a upper-diagonal matrix called
QUBO weight matrix that defines the problem. To turn the
original problem into a QUBO it is first necessary to encode
the variables a and & in the binary variables a;. To do so an
encoding strategy similar to that used in [12] is applied:
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in the equations 6 and 7 the value K corresponds to the
number of logical qubits used to encode each variable. From
the above equations it is possible to note that the total number
of variables of the QUBO problem is 2K N and that the first
KN variables are used to encode the a variables whereas
the last KN ones are used to encode the variables &. The
parameter P > 0 is used for enabling the usage of negative
exponents in the encoding procedure. To enforce the constraint
defined in equation 2a a square penalty term whose strength
is regulated by the hyperparameter ¢ is added to the cost
function. The constraints in eq 2b and 2c are implicitly
satisfied by the choice of the hyperparameter C: from the
equations it is possible to see that the maximum value that
each variable can take is:

K-—1
C = Z BF. (8)
k=0

Therefore by choosing a value of C equal or higher than
this quantity it is possible to guarantee the enforcing of
the constraints. The lower bound is always satisfied because
each «, and &, is non-negative by definition. Moreover,
another penalty term, whose influence is controlled by the
hyperparameter [, is added to enforce that, for each value
of n, at least one of a,, or &, is equal to 0, or equivalently:
b, =0n=0,..., N —1.

N-1
ﬂ( > aa) ©)
0
By adding the penalty terms to the cost functions and by

applying the encoding equations it is possible to obtain the
final formulation of the QUBO problem:

(10)
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The term Q is a 2K N x 2K N matrix that defines the problem,
whose elements are given by:

QK (sNn) i, K(tN 4y = (=1) 170 BHHI72P
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with n,m € {0,...,N—1},4,5€{0,..., K —1} and s,t €
{0,1}. Since the QUBO weight matrix Q is upper-triangular,
it is obtained from () by using the formula:

Qij+ Qi ifi<y;

Qij, if 1 = j;
0, otherwise

Qi = (12)

This problem formulation is used for the QPU of the Advan-
tage system and the Leap’s Hybrid solver, as both they input a
binary quadratic problem. In the case of Leap’s Hybrid solver
the problem is optimized by using both classical and quantum
computing resources. The allocation of such resources and the
problem decomposition is done automatically by the solver.

The final step for optimizing a problem with the QPU
is the minor embedding [26]. In this process the QUBO
problem is embedded in the hardware architecture used for
the annealing. Specifically, each logical variable a; is mapped
to a chain of qubits, i.e., a group of connected qubits used to
represent a specific logical variable of the QUBO problem. The
reason why chains are needed is that it’s not always possible
to directly map the optimization problem directly into the
hardware topology. The values of the elements ; ; of the Q
matrix, which represent the coefficients associated to the terms
a;a; of the cost function, are mapped to physical connections
of chains of qubits.

C. Solutions combination Techniques

The Advantage system outputs 10000 reads (i.e., solutions)
with different levels of energy. In this work, we select the 40
solutions with the lowest energy and we fuse them to compute
the final solution (the number 40 is chosen arbitrarily and other
options can be considered). To combine them, we propose
six approaches based on different weighted average formulas.
The predictions of the 40 solutions are then evaluated on
the training dataset. To each of them is assigned a score
depending on the value of a specific loss function and such
scores are then used to obtain the coefficients of the weighted
average. Specifically, the scores are calculated by considering
the multiplicative inverse of the value of a loss function
between the actual and the predicted value, therefore a lower
value of the loss will be associated to a higher score value.
The loss functions considered are even and non-negative. The
combinations methods differ for the choice of the loss function
and how the scores are used to get the coefficients. Every
method ensures that each weight coefficient is non negative,
its value is lower or equal than 1 and that their sum is equal
to 1. A brief description of the used methods is now provided:

e« QSVR 1: employs a Mean Squared Error (MSE) loss
function and the weights coefficients are obtained by
dividing each scores by the sum of all of them

e QSVR 2: uses a MSE loss function and the coefficients
are obtained by applying a softmax operation on the
scores

¢ QSVR 3: uses a log-cosh loss function and the coeffi-
cients are obtained as in QSVR 1

e QSVR 4: uses a log-cosh loss function and the final
weights are obtained through the application of softmax
on the scores

¢ QSVR 5: Only the best solution in terms of MSE is
considered, this is done by setting the weights associated
to the best solution to 1 and all the others to 0

e QSVR 6: To each solution is assigned the same weight,
i.e., a simple average is performed

III. DATASET DESCRIPTION

In this section a brief overview and description of the dataset
used for the experimental analysis is provided.

e« MERIS: The first dataset used is a synthetic dataset
whose aim is to simulate the concentration of chlorophyll
concentration and its relation to optical measurements. the
wavelengths considered are the first eight spectral bands
of the MERIS sensor (412.5, 442.5, 490, 510, 560, 620,
665, 681.25). The procedure employed to generate the
dataset is the one described in [27].

o SeaBAM:The dataset contains information about 919
measurements regarding chlorophyll-a water concentra-
tion performed in Europe and US. The value of concentra-
tion ranges between 0.019 and 32.787 mg/m?. The sen-
sor used for the measurements is the Sea-Viewing Wide
Field of View Sensor (SeaWIFS) and the wavelengths
considered in the experiments were 412, 443, 490, 510
and 555 nm.

In both case the feature vector is constructed by considering
the spectral measures at different wavelengths whereas the
target value is the corresponding chlorophyll concentration.

IV. EXPERIMENTAL ANALYSIS

For each dataset two experiments were conducted: one using
the D-wave Advantage QPU and the other using Leap’s Hybrid
Binary Quadratic Model (BQM) solver. The implementation
of the classical SVR was done using the Python library sci-
kit learn. In each setting 10 test runs were carried out, each
one using different datasets for training and testing that were
randomly chosen from the initial dataset. In each problem
instance the results were compared with a traditional SVR
on the same datasets. Moreover, the hyperparameters for the
quantum and the classical implementation of the SVR were
the same for each test run. For the experiments using the
Advantage solver the number of training samples was 30,
whereas for the hybrid solver the number was 50. The reason
for this is that the Advantage system could not always find
an embedding with bigger problem instances. This is likely
due to the structure of the problem itself that presents many
interactions between variables that makes difficult finding an



embedding as the number of variables increases [28]. In each
test run the hyperparameters v and C were validated classically
using a validation dataset and a SVR, the validation dataset
was divided into 2 parts: the first one was used to train a
classical SVR with a given combination of hyperparameters
values while the other was used for testing. The configuration
that achieved the best performances in terms of mean squared
error was then used in the test run. The values of v were
selected from the range [0.1,0.5,1,1.5,2,3,4,5,7,10, 20, 50],
whereas the values of C were selected among [1 x Ciip, 2 *
being the quantity defined in eq. 8, that is equal to the
maximum value each «,, and &,, can take. The values related
to the problem encoding were B = 4 and P = 1 for the
synthetic dataset and B = 5 and P = 0 for the SeaBAM
whereas the number of logical qubits K used to encode the
original problem variables was equal to 2 in each test run.
For the training phase the values of both the feature vector
and the target value were converted to the logarithmic domain
as was done in [21], [22], [23]. The reason for this is that
the distribution of the bio-physical quantities is assumed to
be log-normally distributed [29]. The table I reports the result
in terms of MSE obtained by the hybrid solver on both the
synthetic and the seaBaM dataset, while the results obtained by
the Advantage system for the synthetic and SeaBAM dataset
are reported in table II and III respectively. When considering
the experiments on the synthetic datasets the quantum SVR
achieved similar results to its classical counterpart on both the
hybrid solver and the Advantage system. In the experiments
on the SeaBAM dataset the QSVR on average performed
better than the classical one on the hybrid solver whereas
in the experiments using the Advantage system the classical
implementation performed slightly better but the quantum
version managed to obtain good results nevertheless and to
perform better on some test runs.The different versions of
QSVR performed similarly in the synthetic dataset while on
the SeaBAM dataset there was more variation within the
results, this might indicate that the correct choice for the
solutions combination technique becomes more important as
the data complexity increases. In the experiments with the
SeaBAM dataset the QSVR 5 managed to obtain the best
results in average among the different QSVR implementations
but in some specific problem instance it performed worse
compared to the other solutions combination techniques. The
QSVR 2 obtained the second best average results among the
quantum implementations but it was the implementation that
outperformed the classical one the most number of times, 5
out of 10. The link to the repository associated to this work
can be found at !

V. CONCLUSIONS

The main objective of this work was to investigate how
QA could enhance a SVR algorithm for a RS application. The
proposed algorithm was tested on both the D-Wave Advantage
system and on the hybrid solver. The results show that the
quantum implementation of SVR could achieve similar or in

Uhttps://gitlab.jsc.fz-juelich.de/sdlrs/quantum-support- vector-regression

TABLE I: values of MSE obtained by the classical and
quantum SVR implemented on the hybrid solver on both the
synthetic and the SeaBAM dataset

MERIS SeaBAM

Run SVR QSVR SVR QSVR
1 0.1035  0.1032  6.9309  6.9767
2 0.1011  0.0882  8.0448  2.8367
3 0.1488  0.1392  11.3237  5.3423
4 0.0761 0.098 79873  6.0469
5 0.1134  0.1404 13.7752  4.9054
6 0.0973  0.0955 52729 6.365
7 0.0862 0.0869  3.6089  3.7882
8 0.1117  0.1223  6.4235  8.7816
9 0.1124  0.1225  8.5635  9.9013
10 0.1315  0.1056  5.4886 6.019
Average  0.1082  0.1102  7.7419  6.0963

some cases even better results than the classical SVR. This is
indicative of the potential of QA especially when considering
that the original problem was continuous and unconstrained
and that it had to be modified and adapted in order to be
solved by the annealer. In general the hybrid solver provided
better results than the Advantage system and it could also
solve bigger problem instances. Therefore in the near future
practical applications will likely run on a hybrid framework.
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