001     909065
005     20230123110638.0
024 7 _ |a 10.1109/JSTARS.2022.3173893
|2 doi
024 7 _ |a 1939-1404
|2 ISSN
024 7 _ |a 2151-1535
|2 ISSN
024 7 _ |a 2128/31652
|2 Handle
024 7 _ |a WOS:000805801800006
|2 WOS
037 _ _ |a FZJ-2022-02983
082 _ _ |a 520
100 1 _ |a Zhao, Bin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Predicting Classification Performance for Benchmark Hyperspectral Datasets
260 _ _ |a New York, NY
|c 2022
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661160541_2169
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The classification of hyperspectral images (HSIs) is an essential application of remote sensing and it is addressed by numerous publications every year. A large body of these papers present new classification algorithms and benchmark them against established methods on public hyperspectral datasets. The metadata contained in these research papers (i.e., the size of the image, the number of classes, the type of classifier, etc.) present an unexploited source of information that can be used to estimate the performance of classifiers before doing the actual experiments. In this article, we propose a novel approach to investigate to what degree HSIs can be classified by using only metadata. This can guide remote sensing researchers to identify optimal classifiers and develop new algorithms. In the experiments, different linear and nonlinear prediction methods are trained and tested by using data on classification accuracy and metadata from 100 HSIs classification papers. The experimental results demonstrate that the proposed ensemble learning voting method outperforms other comparative methods in quantitative assessments.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ragnarsson, Haukur Isfeld
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ulfarsson, Magnus O.
|0 0000-0002-0461-040X
|b 2
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 3
700 1 _ |a Benediktsson, Jon Atli
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1109/JSTARS.2022.3173893
|g Vol. 15, p. 4180 - 4193
|0 PERI:(DE-600)2457423-5
|p 4180 - 4193
|t IEEE journal of selected topics in applied earth observations and remote sensing
|v 15
|y 2022
|x 1939-1404
856 4 _ |u https://juser.fz-juelich.de/record/909065/files/Predicting_Classification_Performance_for_Benchmark_Hyperspectral_Datasets.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909065
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-15T11:03:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-15T11:03:40Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-15T11:03:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J-STARS : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-17
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21