000909082 001__ 909082
000909082 005__ 20240715202023.0
000909082 0247_ $$2doi$$a10.5194/acp-22-9895-2022
000909082 0247_ $$2ISSN$$a1680-7316
000909082 0247_ $$2ISSN$$a1680-7324
000909082 0247_ $$2Handle$$a2128/31806
000909082 0247_ $$2WOS$$aWOS:000835274100001
000909082 037__ $$aFZJ-2022-02999
000909082 082__ $$a550
000909082 1001_ $$0P:(DE-Juel1)165935$$aPoshyvailo-Strube, Liubov$$b0$$eCorresponding author
000909082 245__ $$aHow can Brewer–Dobson circulation trends be estimated from changes in stratospheric water vapour and methane?
000909082 260__ $$aKatlenburg-Lindau$$bEGU$$c2022
000909082 3367_ $$2DRIVER$$aarticle
000909082 3367_ $$2DataCite$$aOutput Types/Journal article
000909082 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721025183_8172
000909082 3367_ $$2BibTeX$$aARTICLE
000909082 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909082 3367_ $$00$$2EndNote$$aJournal Article
000909082 500__ $$aopen access
000909082 520__ $$aThe stratospheric meridional overturning circulation, also referred to as the Brewer–Dobson circulation (BDC), controls the composition of the stratosphere, which, in turn, affects radiation and climate. As the BDC cannot be directly measured, one has to infer its strength and trends indirectly. For instance, trace gas measurements allow the calculation of average transit times.Satellite measurements provide information on the distributions of trace gases for the entire stratosphere, with measurements of particularly long temporal and dense spatial coverage available for stratospheric water vapour (H2O). Although chemical processes and boundary conditions confound interpretation, the influence of methane (CH4) oxidation on H2O in the stratosphere is relatively straightforward, and thus H2O is an appealing tracer for transport analysis despite these caveats. In this work, we explore how mean age of air trends can be estimated from the combination of stratospheric H2O and CH4 data, by carrying out a proof of concept within the model environment of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In particular, we assess the methodological uncertainties related to the two commonly used approximations of (i) instantaneous stratospheric entry mixing ratio propagation and (ii) constant correlation between mean age and the fractional release factor of CH4. Performing various sensitivity studies with CLaMS, we test different methods of the mean age of air trend estimation, and we aim to provide simple and practical advice on the adjustment of the used approximations for obtaining more reliable mean age of air trends from the measurements of H2O and CH4.Our results show that the estimated mean age of air trends from the combination of stratospheric H2O and CH4 changes may be significantly affected by the assumed approximations. Depending on the investigated stratospheric region and the considered period, the error in estimated mean age of air trends can be large, especially in the lower stratosphere. For particular periods, the errors from the two approximations can lead to opposite effects, which may even cancel out. Finally, for a more reliable estimate of the mean age of air trends, we propose adjusting the approximation method by using an idealized age spectrum to propagate stratospheric entry mixing ratios. The findings of this work can be used for assessing the uncertainties in stratospheric BDC trend estimation from global satellite measurements.
000909082 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000909082 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000909082 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909082 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b1
000909082 7001_ $$00000-0002-0419-440X$$aFueglistaler, Stephan$$b2
000909082 7001_ $$0P:(DE-Juel1)192244$$aHegglin, Michaela Imelda$$b3
000909082 7001_ $$0P:(DE-Juel1)177681$$aLaube, Johannes C.$$b4
000909082 7001_ $$0P:(DE-Juel1)168493$$aVolk, C. Michael$$b5
000909082 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b6$$ufzj
000909082 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-22-9895-2022$$gVol. 22, no. 15, p. 9895 - 9914$$n15$$p9895 - 9914$$tAtmospheric chemistry and physics$$v22$$x1680-7316$$y2022
000909082 8564_ $$uhttps://doi.org/10.5194/acp-22-9895-2022
000909082 8564_ $$uhttps://juser.fz-juelich.de/record/909082/files/acp-22-9895-2022.pdf$$yOpenAccess
000909082 8767_ $$8102160$$d2022-09-21$$eAPC$$jZahlung erfolgt$$zOABLE
000909082 909CO $$ooai:juser.fz-juelich.de:909082$$pdnbdelivery$$popenaire$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access
000909082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165935$$aForschungszentrum Jülich$$b0$$kFZJ
000909082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b1$$kFZJ
000909082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192244$$aForschungszentrum Jülich$$b3$$kFZJ
000909082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177681$$aForschungszentrum Jülich$$b4$$kFZJ
000909082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b6$$kFZJ
000909082 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000909082 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000909082 9141_ $$y2022
000909082 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000909082 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909082 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000909082 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000909082 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000909082 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909082 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000909082 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000909082 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909082 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000909082 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000909082 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000909082 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-18T05:37:09Z
000909082 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-18T05:37:09Z
000909082 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-12-18T05:37:09Z
000909082 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000909082 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000909082 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-19
000909082 920__ $$lyes
000909082 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000909082 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
000909082 980__ $$ajournal
000909082 980__ $$aVDB
000909082 980__ $$aI:(DE-Juel1)IEK-7-20101013
000909082 980__ $$aI:(DE-Juel1)IBG-3-20101118
000909082 980__ $$aAPC
000909082 980__ $$aUNRESTRICTED
000909082 9801_ $$aAPC
000909082 9801_ $$aFullTexts
000909082 981__ $$aI:(DE-Juel1)ICE-4-20101013