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designed to simulate a plurality of components (sol-
utes, substrates, and microorganisms). They specify 
components and interactions, drawing from the disci-
plines of soil science, botany, microbiology, and ecol-
ogy. Solute transport models are applied to describe 
bioavailability in the rhizosphere. The root is typi-
cally a sink (e.g. nutrient uptake) or source (e.g. exu-
dation) for one or more solutes. Microorganisms are 
usually described in time only, neglecting possible 
spatial movement. Interactions between components, 
e.g. chemical reactions and substrate-dependent bac-
terial growth rates, are usually described by coupling 
via reaction terms.
Conclusions  Rhizosphere models share concepts 
that we organized in a collective framework. This 
collective framework facilitates the development of 
new models. The interdisciplinary approach in which 

Abstract 
Background  The rhizosphere is the influence-sphere 
of the root. It is a local ecosystem with complex 
functions that determine nutrient uptake, cycling of 
resources, and plant health. Mathematical models can 
quantitatively explain and help to understand rhizos-
phere complexity. To interpret model predictions and 
relevance of processes, we require understanding of 
the underlying concepts. Conceptualization of rhizo-
sphere processes bridges mathematical modeling and 
experimental work and thus is key to understanding 
the rhizosphere.
Scope  We review concepts and assumptions foun-
dational to the modeling of soil-plant-microorganism 
processes in the rhizosphere. Rhizosphere models are 
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knowledge from soil ecology, botany, and soil phys-
ics are combined in rhizosphere models has proven 
fruitful for applications in plant and soil systems. 
We advocate multi-component-multi-interaction eco-
systems around the root, with each component rep-
resented by an advection-diffusion-motility-reaction 
equation.

Keywords  Rhizosphere modeling · 
Microorganisms · Solute transport · Nutrient uptake · 
Soil-plant-microbe interactions

Introduction

Plants form the rhizosphere through soil exploration 
by root growth. Abstractly, roots are sinks and sources 
altering the properties of the surrounding soil (e.g. 
Hinsinger et al. 2005; Sasse et al. 2018). Conversely, 
the root itself is influenced by the surrounding physi-
cal processes, chemical reactions, and microorgan-
isms (Watt et al. 2006a). The rhizosphere is not only 
distinct from the bulk soil in its chemical and physi-
cal properties but also in its biological and ecologi-
cal properties, including the activity of enzymes and 
microorganisms.

Rhizosphere research is interdisciplinary, bridging 
three traditional disciplines: soil science (including 
soil chemistry and soil physics), plant sciences, and 
soil microbial ecology (Fig. 1). Due to the complexity 
of the rhizosphere (Curl and Truelove 1986; Huang 
et al. 2014), its modeling is reductive and integrative. 
Rhizosphere modeling aims at a better understanding 
of temporal and spatial rhizosphere functioning and 
the underlying mechanisms of root traits and soil pro-
cesses. The models serve as tools to explore the rela-
tive importance of such traits and processes. Thereby, 
rhizosphere models help to decide what plant-, soil-, 
and microbial properties to measure. Rhizosphere 
research is discovering ever more ways exudates, 
nutrients, water, and microbes interact. The models 
become more complex, aiming at a holistic descrip-
tion (York et  al. 2016). The proposed mechanisms, 
however, are diverse, and there is a lack of mechanis-
tic understanding when it comes to plant-microorgan-
ism interactions (Jacoby et  al. 2017). An increasing 
number of components and proposed interactions 
leads to increasing diversity in rhizosphere models 
and their application.

The usefulness of a model is specific to its appli-
cation. When comparing alternative models devel-
oped for the same application, it is important to ver-
ify assumptions and not only simulated outcomes. 
Despite the plurality, rhizosphere models share many 
common concepts. The models can thereby be cat-
egorized and summarized using a collective frame-
work. A deeper understanding of the foundational 
concepts, assumptions, and commonalities leads to 
better designs of experiments with clear targets to 
test.

We review the diversity of published rhizosphere 
models, focusing on their concepts and underlying 
assumptions. Comparison of models is important 
to develop further mechanistic understanding. This 
review provides a framework for comparing and 
developing rhizosphere models.

Concepts in rhizosphere modeling

Physical and chemical soil properties strongly deter-
mine how nutrients are available to both plants and 
microorganisms. Hence, soil science has focused on 
solute transport towards the root surface and chemi-
cal reactions occuring in the rhizosphere (bioavail-
ability, Barber 1995; Tinker and Nye 2000). Rhizos-
phere nutrient transport and uptake models date back 
to work from the 1960s (Bouldin 1961; Barber 1962; 
Olsen et  al. 1962; Passioura 1963; Gardner 1965; 
Olsen and Kemper 1968; Nye and Marriott 1969), 
Fig. 2. The rate of transport is strongly influenced by 
sorption (desorption, adsorption, or absorption) and 
other reactions, as well as soil structure and water 
content.

Plant science has studied how the rhizosphere 
influences nutrient uptake and, more recently, the root 
phenotype, whereas soil microbial ecology has been 
concerned with population dynamics. Models of the 
rhizosphere combine concepts from these disciplines. 
We present mathematical descriptions of the con-
cepts, at the same time merging the different formula-
tions that can be found in literature into one collective 
framework.

Solute transport in soil

Rhizosphere models typically include transport 
of solutes as the sum of advection and diffusion. 
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Fig. 1   The rhizosphere is a micro-ecosystem formed around 
the root, and models draw on concepts in botany, soil science, 
and ecology. The classical models represent the rhizosphere 
as cylinder of unit length with the root as boundary condition. 

Microorganisms are modeled as a system of ordinary differen-
tial equations in time (0D space). Soil sorption and diffusion 
are important processes since they can limit crop production
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Advection is directed solute transport within the 
rhizosphere because of water flow (sometimes 
termed convection). It is often called mass flow 
(Passioura 1963; Nye and Marriott 1969; Bouldin 
1989), despite diffusion also being a type of mass 
flow. Roots attract water along gradients in water 
potential induced by transpiration and osmotic 
potential differences. The differences in osmotic 
potentials can be caused by metabolites in the cells 
and not just by solutes themselves. Water flow 
causes the solutes to travel (i.e. by advection) to the 
root surface, where the root may take them up. The 
movement of soil nanoparticles (colloids) and the 
substances bound to them is usually not considered. 
It is assumed that advective transport only takes 
place in the liquid phase.

If the uptake is faster than the transport of a sol-
ute towards the root, depletion at the root surface 
occurs, forming a concentration gradient. This is 
also named the (nutrient-)depletion zone, in which 
the solute concentration gradient causes diffu-
sion towards the root. If the uptake is slower than 
the transport of a solute, the solute concentrations 
increase at the root surface, causing diffusion away 
from the root.

Transport equation

The concentration of a single ion, C, in a given soil 
domain may be defined as the sum of the concen-
trations in the liquid, solid, and gas phases. The 
gas phase in soil, well described by Scanlon et  al. 
(2001), has often been ignored in rhizosphere mod-
els as a common simplification for most plant nutri-
ents. Thereby, the total concentration in soil is (Nye 
and Marriott 1969; Barber and Cushman 1981)

where Cℓ [M] and Cs [mmol g-1 soil] are the concen-
trations in liquid and solid phases respectively (sub-
scripts ℓ and s), θ [cm3 cm-3] is the volumetric water 
content, and ρ is the soil bulk density (dry solid soil 
mass per unit volume, g cm-3).

In the following equations, we use the Nabla-
operator, ∇ , to cover arbitrary (soil) dimensions and 
geometries for the sake of generality. A concrete 
specification of dimensions and coordinate systems 
is a modeling decision during the realization of the 
concept by a mathematical description. The change 
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Fig. 2   Milestones of the development of the classical rhizos-
phere model and spatial microorganism models (bottom part). 
All variants of the classical rhizosphere model consider trans-
port in soil and root-soil interactions in the form of boundary 
conditions. Crank and others earlier applied the heat (trans-
port) equation to porous media. Crank (1956) described the 
general (heat) diffusion referencing Henry (1939). Bouldin 
(1961) used diffusion to the root. Nye and Marriott (1969) 

used diffusion, advection, and Michaelis-Menten uptake kinet-
ics. Barber and Cushman (1981) included efflux and zero-flux 
outer boundary. Barber (1962) wrote a concept paper about dif-
fusion and mass flow in soil. Itoh and Barber (1983) combined 
root hair reaction using the formula in Baldwin et  al. (1973) 
and Bhat et al. (1976). Today, 2021, there are many variations 
on the classical radial respectively cylindrical rhizosphere 
description published
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in the total concentration in soil is described by a 
diffusion-advection-reaction equation,

where v > 0 is the soil water flux towards the root sur-
face, R is a reaction term (often a function of C, sink- 
and source terms), and De is the effective diffusion 
coefficient in terms of total C.

Equation (1) shows diffusion ( D
e
∇C ) of total 

C. Here, Cs is in equilibrium and scales with Cℓ. 
Hence, due to rapid de- and attachment of solutes 
from the solid, C diffuses in total. Eq. (1) does not 
describe diffusion through the solid or diffusion 
of slowly equilibrating soil fractions. The defini-
tion of De and the unit of Cℓ are important to dis-
mantle eq. (1).

The effective diffusion in soil is typically much 
slower than the diffusion constant of the solute in 
pure water (Fig. 1). With a diffusion coefficient that 
accounts for soil water content and tortuosity, Df, 
the effective diffusion coefficient is typically esti-
mated by De ≔ Df dCℓ /dC, where dCℓ /dC is recipro-
cal to instant soil sorption.

Barber (1962) and Nye (1966a) added diffusive 
flux through the solid phase at first (intra-aggregate 
diffusion) but that was neglected after; thereby, the 
diffusion is approximately Df ≔ Dℓθτ (Nye 1966b), 
where Dℓ is the diffusion coefficient in pure water. 
This estimation of the diffusion coefficient is con-
centration-dependent and holds for a certain range 
ΔCℓ (Nye 1966b). Soil pathways are not explic-
itly modeled but macroscopically accounted for by 
the soil-specific tortuosity (also called impedance) 
factor, τ < 1, which assumes that the average path 
for transport is longer and the diffusion is thereby 
slower (Porter et al. 1960). Because Cℓ is the con-
centration in the soil solution (not soil volume), 
the volumetric water content θ scales Cℓ but can 
be written together with the diffusion coefficient 
(Gardner 1965). Since these soil pathways contain 
sorption-sites, diffusion in soil is modeled to be 
additionally affected by equilibrium-sorption via 
dC/dCℓ. This term instantaneously adjusts the con-
centration in the solid phase to changes in the liquid 
phase.

With this definition of De, diffusion in the soil 
solution without sorption can be written as

(1)
�C

�t
=∇ ⋅ De∇C + ∇ ⋅ vC

𝓁
+ R, Soil sorption adds ρ∂Cs /∂t to the left-hand-side 

of eq. (2), rearranging gives again the diffusion 
part of eq. (1) (Olsen et  al. 1962; Gardner 1965). 
Summarized, the physical (macro-)scale described 
here is a homogeneous mixture of liquid and solid 
phases in instant equilibrium.

The root system grows in all spatial directions, 
however, eq. (1) is commonly applied to a unit 
root segment on a radial symmetric plane. Hence, 
to specify the spatial dimensions of the described 
rhizosphere transport model, the 1D radial approach 
is used instead of higher dimensional alterna-
tives. Sorption is described in the next section 
but is classically represented by the soil buffer 
power  b ≔ ∂C/∂Cℓ (Bouldin 1961; Olsen et  al. 
1962). Thus, the transport equation can be written 
in Cℓ only as

where v0r0 is the inward flux of water (under steady-
state water flux conditions 2πrv = 2πr0v0, Nye and 
Marriott 1969; Barber and Cushman 1981). To define 
a full model, however, initial and boundary condi-
tions are required. Initial conditions are usually con-
stant for the rhizosphere region, Cℓ(r, t = 0) = Cℓ,initial. 
The boundary conditions used in rhizosphere models 
are discussed in the following sections.

The 1D radial approach is the basis for many 
rhizosphere models and was, for example, applied 
to potassium and phosphate (Claassen et  al. 1986; 
Leitner et  al. 2010b). As such, eq. (3) may repre-
sent the ‘classical’ rhizosphere models that describe 
the transport and uptake of a single solute in (1D) 
radial coordinates around a root segment of unit 
length (Fig. 1). They are often named “Nye-Tinker”, 
“Barber-Cushman”, or “Nye-Tinker-Barber” mod-
els, even when they deviate from these classical 
works, for example, by specifying different uptake 
dynamics and constraints on the interface between 
the rhizosphere and bulk soil. In order to become 
more precise, we do not follow this naming but 
distinguish the classical models by the complexity 
of the transport equation, the rhizosphere bound-
ary conditions at the root surface and rhizosphere 

(2)�
�C

�

�t
= ∇ · D

�
��∇C

�
.

(3)b
�C

�

�t
=

1

r

�

�r

(

rDeb
�C

�

�r
+ r0v0C�

)

+ R,
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distance, and the reaction term. For solute transport, 
we distinguish models that describe diffusion only 
(as in Bouldin 1961; Nye 1966b), from those that 
also include advection (Passioura and Frere 1967; 
Nye and Marriott 1969; Barley 1970). Solute uptake 
may be divided into categories concerning the con-
centration at the root surface: constant, linear, and 
non-linear. However, before we address the plant, 
we stay with the soil and review sorption in rhizo-
sphere models.

Soil sorption and chemical reactions

Sorption is the exchange of concentrations in the soil 
solid and liquid phases: Cℓ and Cs (Fig.  1). These 
concentrations may equilibrate rapidly or slowly, after 
weeks (Barrow 2008). Relative to the dynamics of the 
liquid phase, the solid phase can combine slow and 
fast processes,

with

Slow sorption in rhizosphere models is described 
by ordinary differential equations (ODEs): 
∂Cs,slow/∂t = g(Cℓ, Cs,slow), where Cℓ = (Cℓ,1, …, Cℓ, N) 
and Cs,slow = (Cs,slow,1, …, Cs,slow,N) are the interacting 
components (e.g. Darrah and Staunton 2000; Boghi 
et al. 2018; McKay Fletcher et al. 2020; Kuppe et al. 
2022). The reaction term R of the transport equation 
would include the ad- and desorption kinetics relative 
to Cℓ as function −g(Cℓ, Cs,slow) (reversible reaction, 
Fig. 6). Additional ODEs need to be solved for Cs,slow. 
Because there are distinct ad- and desorption rates, at 
least one additional kinetic parameter is needed com-
pared to the fast sorption (Fig. 3a). Each ODE needs 
an initial condition for Cs,slow, which is conveniently 
assumed to start in equilibrium with Cℓ at t = 0, hence 
0 = g(Cℓ,initial, Cs,slow) gives the initial Cs,slow.

Usually, solely fast sorption is assumed, i.e. 
Cs = Cs,fast. On the time-scale of Cℓ, this is an instan-
taneous reaction. Steady-state (dCs /dt= 0) is assumed 
and the sorbate concentration becomes an algebraic 
function of Cℓ: the sorption isotherm Cs = f(Cℓ) 
(Olsen and Kemper 1968). The derivative of the 

(4)�C

�t
=

��C
�

�t
+

��Cs

�t

(5)
�Cs

�t
∶=

�(Cs,fast + Cs,slow)

�t
.

(steady-state) sorption isotherm is commonly sub-
stituted into the transport equation (see also Crank 
1956),

This method is unproblematic for the linear iso-
therm, but could be numerically problematic for non-
linear isotherms. Most rhizosphere transport models, 
however, use a linear sorption isotherm with a slope 
dCs /dCℓ= k, where k is the equilibrium constant (ratio 
of the ad- and desorption rate coefficients). Some-
times this equilibrium constant is called soil buffer 
power, hence, related to the concentration in the solid 
phase (Olsen et  al. 1962; Olsen and Kemper 1968; 
Roose and Schnepf 2008; Roose and Kirk 2009). 
However, we use the definition of the soil buffer 
power related to total equilibrium concentration as 
b = dC/dCℓ (Nye 1966b; Nye and Marriott 1969; Bar-
ber and Cushman 1981; Kirk 1999).

Linear sorption is a reasonable approximation to 
simulate relatively low concentrations (Darrah 1991a) 
as it assumes that there are many unoccupied react-
ing sites. For example, Bhat and Nye (1973; Baldwin 
et al. 1973; Barber and Cushman 1981; Itoh and Bar-
ber 1983; Yanai 1994; Raynaud 2010) used the linear 
isotherm

where k = df(Cℓ)/dCℓ is the equilibrium constant and 
obtained the expression,

for the constant soil buffer power. This means that 
the soil buffer power determines the total concentra-
tion in the rhizosphere and plays an important role in 
replenishment and the shape of the solute concentra-
tion profile. If b > θ, the solid phase contributes to the 
total concentration. If b = θ, there is only liquid phase 
concentration (Fig. 3b), e.g. for nitrate (Darrah et al. 
1983; Korsaeth et  al. 2001; Kirk and Kronzucker 
2005) or for non-adsorbed carbon (Darrah 1991b, 
1991c).

Sometimes non-linear sorption isotherms may be 
a closer approximation, for example, when the sorp-
tion sites have been (partially) saturated by nutrients. 
Kirk and Nye (1985) used a Freundlich isotherm for 

(6)
�C

�t
=

(

� + �
d f

(

C
�

)

dC
�

)

�C
�

�t
.

(7)Cs = kC
�
,

(8)b = � + �k,
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Fig. 3   Different ways to include sorption into the rhizosphere 
models. The equations also lead back to the applied assump-
tions. a The solid phase contains fast-, slow- or a combina-
tion of both processes. If the sorption reaction is not instant, 
a differential equation has to be solved. Remark: we did not 
write the θ and ρ for simplicity. b The soil buffer power can be 
interpreted as a “scaling” of the transport processes and deter-
mines the size of the instant equilibrating solid component. 
c Surface-plots of Cℓ with b = 107, 100, θ. Example param-

eters: Root radius r0 = 0.05  cm, outer radius r0 = 0.55  cm, 
Michaelis-Menten parameters, Imax  = 2·10−7  μmol  cm−2  s−1, 
Km = 0.005  mM, Cmin  = 10−4  mM. Initial solute concentra-
tion 0.012  mM, diffusion in liquid Dℓ =10−7  cm2  s−1, θ = 
0.3, soil tortuosity τ = 0.5, no advective water flux, v0 = 0, 
no root hairs. Simulation over 14  days. d Cumulative uptake 
for constant soil buffer powers b. In this example, the uptake 
converged to its limit for b = 107. The uptake, however, can be 
higher when including root hairs or higher Imax

Plant Soil (2022) 474:17–55 23
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sorption of phosphate fertilizer in a planar soil model, 
although, without a root. The Freundlich isotherm is a 
power-function, Cs = kCℓ

β, where β < 1 is a constant. 
It assumes that sorption is reduced at higher solute 
concentrations but does not cover extremely high sol-
ute concentrations at which all sorption sites are satu-
rated. Kirk et al. (1999) fitted a Freundlich isotherm 
to a concentration profile of citrate but used a con-
stant soil buffer power as an average of this sorption. 
The use of non-linear isotherms is often defended 
based on empirical observations but not mechanisti-
cally explained.

Microbial intra-cellular reactions are linked to 
solute transport in the soil through the uptake and 
release of substances by cells. In this way, microor-
ganisms can affect local ion concentrations similarly 
to soil sorption. The soil buffer power constant and 
other implementations of sorption, therefore, might 
conveniently represent much more than just soil sorp-
tion. As such, sorption is effectively used as a fitting 
factor that encapsulates multiple abiotic and biotic 
soil processes.

Multiple solutes might compete, such that the 
adsorption is influenced by the occupation of sites. 
The saturation of one sorption site by a number (N) of 
adsorbates can be modeled by using the competitive 
Langmuir isotherm:

where Cs,j is the concentration in the solid phase j; 
sj = n/nj is the ratio of number of total available sorp-
tion sites per unit mass of soil, n, relative to the num-
ber of sorption sites one solute (of type j) occupies, 
nj; and kj is a Langmuir equilibrium constant (Sch-
nepf et al. 2012). For each competing solute, a trans-
port equation is solved. The transport equations of the 
solutes are then coupled via the sorption terms.

Solubilization is the desorption of an ion, Cs,1, by 
another solute, Cℓ,2. It has been modeled by non-
linear steady-state formulas of the type 
C
s,1 = k1C�,1∕

(

k2 + k3C�,2

)

 , where k1, k2, and k3 are 
reaction rate coefficients. Examples include solubi-
lization of zinc by deoxymugineic acid (Ptashnyk 
et al. 2011) and phosphate by citrate (Zygalakis and 
Roose 2012). Alternatively, a linear solubilization is 
sometimes used to model these (root-induced) 

(9)Cs,j =
kj sj C�,j

1 +
∑N

i=1
ki C�,i

for each j

solute interactions. A source (or sink) is added to 
∂C1/∂t of eq. (1), as a linear function of another 
interacting solute (see “diffusion of two interacting 
solutes”, Nye 1983). Thus, a solute concentration 
Cℓ,1 increases instantaneously in response to a 
change in concentration of another solute Cℓ,2. The 
total differential is used to specify an interaction 
coefficient (Nye 1983), which is then valid for a 
limited range of Cℓ,2. This phenomenological 
approach was put into practice to model solubiliza-
tion (Kirk 1999; Saleque and Kirk 1995). For exam-
ple, phosphate may dissolve when the organic acid 
concentration (Kirk et  al. 1999) or pH increases 
(Kuppe et al. 2022).

In contrast to the modeling of adsorption, 
described above, absorption as the accumulation 
of ions from solution into soil particles may be 
described by a so-called ‘dual-porosity’ model. It 
includes diffusion within soil particles (intra-aggre-
gate diffusion), separate from diffusion among the 
surfaces of soil particles (Ptashnyk and Roose 2010; 
Ptashnyk et al. 2010; Zygalakis et al. 2011; Zygala-
kis and Roose 2012).

Chemical steady-state models have been coupled 
to transport equations (Geelhoed et al. 1999; Niet-
feld and Prenzel 2015; Szegedi et  al. 2008). For 
example, solubilization of phosphorus by citrate 
was realized by modeling the inner-sphere-compl-
exations (Geelhoed et  al. 1999) using a chemical 
steady-state model (Hiemstra and Van Riemsdijk 
1996). Nietfeld and Prenzel (2015) modeled the 
root-induced pH and aluminum dynamics and the 
interaction of multiple ions to simulate the uptake 
of base cations by tree roots. Note that they esti-
mated the diffusion coefficient ensuring electro-
neutrality (Nye 1966a). Espeleta et al. (2017) con-
sidered hydro-biogeochemical processes (water 
and solutes) for a non-growing single root with-
out inter-root competition. They used the model 
MIN3P (Mayer et  al. 2002) to include multiple 
chemical species in the rhizosphere for competi-
tive soil cation exchange and diurnal plant-water 
rhythms. Gérard et  al. (2017) also used MIN3P, 
but it was applied on a 2D soil column coupled 
to a root architecture model. The root-induced 
change in phosphate availability by change in pH 
and calcium concentrations has also been modeled 
as steady-state chemical reaction model without 
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the coupling to transport equations (e.g. Devau 
et  al. 2011). For an in-depth review of geochemi-
cal reactive transport models, we refer the reader to 
Nowack et al. (2006).

Application of the transport equation

Many rhizosphere models use the advection-diffu-
sion-reaction equation to simulate various plants, 
soils, essential nutrients, and other solutes. These 
rhizosphere models can be grouped into models that 
only consider diffusion and those that include advec-
tion (Table  1). Barber (1962) stated that the domi-
nant process in the rhizosphere is related to the ion 
concentration in the soil solution. Fried and Shap-
iro (1961) drew attention to the soil moisture con-
tent since, in dryer soil, advection might increase, 
whereas diffusion might decrease. Barber et  al. 
(1963) stated that calcium, magnesium, and nitrogen 
are driven by advection while potassium and phos-
phate reach the root by diffusion. Diffusion is thought 
to drive phosphate transport, whereas advection was 

more important for calcium, magnesium, and potas-
sium (Bouldin 1989; Williams and Yanai 1996). 
For widely spaced root segments, nitrate uptake was 
found to be sensitive to the rate of root water flux 
(McMurtrie and Näsholm 2018). However, this is a 
conclusion from a local, segment-based model that 
does not account for different root structures. Oye-
wole et al. (2017) studied the potential importance of 
advection experimentally in boreal forest soils. They 
conclude that there is a strong interaction between 
water and nitrogen availability where advection par-
ticularly contributes to nitrate transport to the root. 
We conclude that the concretization of eq. (3) var-
ies for different soil types and solutes, and that the 
relative importance of diffusion versus advection is 
strongly dependent on the parameterization of the 
model.

Although often associated with phosphate uptake, 
the classical radial rhizosphere models have much 
broader applications. For example, Boghi et al. (2018) 
modeled plant uptake of uranium. The transport 
and consumption of dissolved oxygen was modeled 

Table 1   Rhizosphere model publications ordered by application and assumption on transport

(*) the model does not include sorption or a soil buffer power

Component C�,i Mass flow by diffusion and advection (v > 0) Mass flow by molecular diffusion only (v = 0)

NH4
+ Leadley et al. (1997) Darrah et al. (1983); Korsaeth et al. (2001);

Kirk and Kronzucker (2005)
NO3

− Bouldin (1989)*; Hoffland et al. (1990)*;
Leadley et al. (1997)

Darrah et al. (1983)*; Korsaeth et al. 2001)*;
Kirk and Kronzucker (2005)*; Gérard et al. (2017)

P Itoh and Barber (1983); Bhat et al. (1976);
Roose and Kirk (2009)

Olsen et al. (1962); Bouldin (1961)*; Geelhoed et al. (1997);
Kirk (1999); Huguenin-Elie et al. (2003); Zygalakis and Roose 

(2012);
Raynaud and Leadley (2004); Schnepf et al. (2012);
de Parseval et al. (2017); Gérard et al. (2017);
McKay Fletcher et al. (2020); Kuppe et al. (2022)

K Claassen et al. (1986); Bouldin (1989);
Szegedi et al. (2008)

Gérard et al. (2017)

Ca Bouldin (1989) Gérard et al. (2017)
Mg, SO4, Cl Bouldin (1989)*
H+ Bar-Yosef et al. (1980); Nye (1981) Gérard et al. (2017); Kim and Silk (1999)
H3O+, HCO3

− Nye (1981) Huguenin-Elie et al. (2003); Kuppe et al. (2022)
Cm(H2O)n Darrah (1991c)* Sung et al. (2006)*; Newman and Watson (1977)*
Zn Bar-Yosef et al. (1980); Lehto et al. (2006);

Ptashnyk et al. (2011)
Arnold et al. (2010)

Citrate Geelhoed et al. (1999) Schnepf et al. (2012); Zygalakis and Roose (2012);
Kirk (1999); De Parseval et al. (2017); McKay Fletcher et al. (2020)
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(Højberg and Sørensen 1993) and later coupled to 
transport and uptake of nitrate (Kirk and Kronzucker 
2005). Supply of oxygen (de Willigen and van Noord-
wijk 1984), and venting of carbon dioxide (Nye 
1981; Kirk et al. 2019) and methane (Arah and Kirk 
2000) by roots have been modeled. However, gases 
as sources or sinks in the rhizosphere system seem to 
be more common in ODE models without simulating 
transport (Blagodatsky and Richter 1998; Strigul and 
Kravchenko 2006; Faybishenko and Molz 2013).

To summarize this section, solute transport in 
the rhizosphere has been simulated by a diffusion-
advection-reaction equation. Various published 
rhizosphere models, however, differ in (1) their dif-
fusion coefficient, (2) inclusion or exclusion of the 
advection-term, (3) the way sorption and soil chem-
istry have been described, and (4) the number of 
solutes simulated.

The root in rhizosphere models

Most often, the root surface has been modeled as 
the inner boundary of the rhizosphere domain (rhiz-
oplane). This is mathematically realized by a so-
called ‘inner’ boundary condition (Fig. 1). The outer 
boundary is placed at the other end of the simulation 
domain and may not be equal to the width of the gra-
dients formed and thereby the biological rhizosphere 
definition.

For rhizosphere models, the boundary conditions 
can be split into two groups. First (Dirichlet bound-
ary conditions), concentrations prescribed on the 
boundary,

and second (Neumann or Robin boundary conditions, 
respectively, when advection is included), fluxes pre-
scribed (perpendicular) to the boundary,

where the subscript b denotes the inner or outer 
boundary, i.e. Ib is the flux across the boundary, and 
for the radial description as in eq. (3) rb is either 
defined as the root surface r0 or outer radius r1.

In addition to the root surface forming the inner 
boundary condition, uptake or exudation can take 

(10)C
�

(

rb, t
)

= Cb,

(11)Deb
�C

�

(

rb, t
)

�r
+

v0r0

rb
C
�

(

rb, t
)

= Ib.

place inside the simulated rhizosphere, for exam-
ple, when root hairs are assumed to stick out into 
the rhizosphere domain (Bhat et  al. 1976). In this 
case, the root is modeled as a sink or source reac-
tion term (e.g. Gérard et  al. 2017). Also, in non-
spatial models (see the microbial section below), 
the root is often just a source or sink, e.g. of carbon 
(Table 3). Modeling the root as the inner boundary 
of the rhizosphere is most common, and therefore 
we next discuss different formulations and the asso-
ciated assumptions.

Inner boundary conditions: Rhizodeposition 
and solute uptake by roots

For nutrient uptake, the inner boundary conditions 
can be: 1) fixed concentration (e.g. everything is 
taken up Cℓ(r0, t) = 0 or Cℓ(r0, t) = Cmin at the root 
surface r0); or 2) prescribed influx, I0 > 0, or efflux, 
I0 < 0, of the root at rb = r0 in eq. (11).

The so-called zero-sink condition, Cℓ(r0, t) = 0, is 
typically used for simulating phosphate uptake (e.g. 
Passioura and Frere 1967; Hoffland et  al. 1990; de 
Willigen and van Noordwijk 1994b; Geelhoed et  al. 
1997). It is assumed that the root can take up the sol-
ute quickly and draw down the concentration at the 
root surface to a low (constant) level. Consequently, 
the uptake rate is limited by the transport of solutes to 
the root surface. Such models are numerically unfa-
vorable since numerical errors can accumulate and 
the concentration can drift from the given value over 
time.

Alternative to the prescribed concentrations at the 
root surface is prescribed fluxes over the boundary. 
De Willigen and van Noordwijk (1994a) used a con-
stant uptake rate, and Nye (1981) a constant release 
rate of protons at the root surface (and at the root 
hairs in this case). We further distinguish linear and 
non-linear functions of the solute concentration. In 
the earlier models (Bouldin 1961), solute uptake by 
a root, i.e. the inner boundary of the rhizosphere was 
assumed to be linear. Later it was assumed to be non-
linear (Nye and Marriott 1969; Barber and Cushman 
1981), see Fig. 2. Michaelis-Menten uptake kinetics, 
first introduced to the classical rhizosphere model 
by Nye and Marriott (1969), is arguably the most 
used non-linear inner boundary condition. Efflux 
was added to the Michaelis-Menten uptake a decade 
later (Claassen and Barber 1974, 1976; Barber and 
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Cushman 1981), either by subtracting an efflux rate 
explicitly from the Michaelis-Menten influx or by set-
ting a minimum concentration for uptake.

Michaelis-Menten kinetics are often considered 
to be mechanistic as it seems to mimic the work-
ings of nutrient transporters in the cell membranes 
and thereby an upscaled version of micro-kinetic 
processes. The formulation fits data well (Nye and 
Marriott 1969; Claassen and Barber 1974; Van Rees 
1994). This type of uptake kinetics is, however, 
empirical and not truly mechanistic since it does not 
describe apoplastic and symplastic pathways in the 
root cortex nor the summed kinetics of the various 
transporters, each with their own kinetics and mem-
brane concentrations (Darrah et al. 2006). Upscaling 
from transporter density in a root surface area to the 
root segment uptake kinetics is still a knowledge gap 
and Michaelis-Menten kinetics remains the most used 
approach to model nutrient uptake (Griffiths and York 
2020).

Outer boundary conditions: Inter‑root competition 
and bulk soil interface

The rhizosphere first was described based on micro-
organisms that were more abundant close to the root 
than further away (Hiltner 1904). In contrast, clas-
sical rhizosphere models are based on a putative 
nutrient boundary or a mid-distance to nearby roots. 
If neighboring root segments have similar deplet-
ing strength, thereby influencing fluxes at this dis-
tance equally, inter-root competition is modeled by 
a zero-flux outer boundary condition, I1 = 0 at r1 
in eq. (11), where no solute is flowing into or out 
of the modeled domain across the outer boundary 
(Cushman 1979a). The mid-distance to a neighbor-
ing root, r1, is typically calculated from a local root 
length density, RLD = 1/(πr1

2) (Baldwin et al. 1973). 
This is geometrically not possible and thereby an 
approximation.

Furthermore, classical rhizosphere models assume 
no constraints on water fluxes (no root competi-
tion for water): over the rhizosphere distance, there 
is plenty of water, and there is no physical effect on 
the water flux, v, or the volumetric soil water con-
tent, θ. This results in a constant θ and effective dif-
fusion coefficient, De. The water flux at radius r in the 
rhizosphere, 2πrv is equal to the water flux over the 
root surface, 2πr0v0 (conservation of water, Nye and 

Marriott 1969; Barber and Cushman 1981), whereas 
the nutrient flux is assumed to be zero over r1 (Fig. 4). 
These are conflicting assumptions that are not eas-
ily resolved in a one-dimensional radial coordinate 
system, while in higher dimensions, there would be 
water influx from the sides or the top. Solutions for 
depletion of water in a radial rhizosphere exist, nota-
bly, the analytical solution by Schröder et al. (2008). 
However, this still provides no solution for the replen-
ishment of water that typically occurs at a larger 
scale.

Less conflicting with respect to water would be the 
use of a far-field boundary (Roose et  al. 2001; Pas-
sioura and Frere 1967), where a constant solute con-
centration is given at the outer boundary, equal to 
the initial condition in bulk soil (C → C0, r → ∞ for 
t > 0), i.e. a Dirichlet condition at a reasonably large 
outer radius, r1, relative to the depletion zone, “far” 
away from the root surface. The far-field boundary 
approach, however, ignores root competition com-
pletely and gives similar results to placing the outer 
zero-flux boundary itself far away from the root. 
A Dirichlet condition (no inter-root competition) 
is applicable to one solute with relatively high soil 
buffer powers.

Root competition for nutrients, or facilitation by 
exudates, is more likely to occur when the actual 
depletion or exudation zones are relatively wide 
and occurs more rapidly for mobile components like 
nitrate, potassium, or protons and hydroxide ions 
(pH). Unless roots are very close together, (inter-)
root competition may not influence phosphate uptake 
(Darrah et  al. 2006) since phosphate travels slowly 
through the soil due to stronger sorption (e.g. Kuppe 
et  al. 2022). Postma et  al. (2014) computed from 
simulated 3D root system architecture that the over-
lap of phosphate depletion zones in a maize mono-
culture is less than 14%, of which the most over-
lap occurred among roots of the same plant at the 
branching points.

Solute uptake by root hairs

Root hairs are important for solute uptake as 
they increase the root surface. We consider four 
approaches to representing root hairs in models. 
Listed with increasing level of detail, the root hairs 
have been modeled by: (1) increasing the root radius 
(Passioura 1963; Nye 1966b); (2) including a reaction 
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term using a steady-state depletion profile (Itoh and 
Barber 1983; Bhat et al. 1976); (3) using the homog-
enization theory (Leitner et al. 2010a; Zygalakis et al. 
2011; Zygalakis and Roose 2012); and (4) describ-
ing their geometry spatially explicit (Geelhoed et al. 
1997; Keyes et al. 2013).

Including root hairs as increased root radius 
(approach 1) assumes that the effective radius of 
uptake is the root radius plus an average root hair 
length and ignores the uptake from in-between the 
hairs. It assumes that the root hair tips are the pri-
mary way to achieve soil contact and that they do 

so at an average distance from the root surface. Pas-
sioura (1963; Nye and Tinker 1977) called this an 
“equivalent cylinder”. To approximate the total sur-
face area, Passioura (1963) gave this new root radius 
twice the average root hair length. For example, 
Gardner et al. (1983) and Kirk (1999) just extended 
the inner boundary (root radius equals the length of 
root hairs). Imagine a root with such dense hairs that 
only the root hair tips can contribute to uptake, and 
no nutrients move in-between the hairs towards the 
root surface. Nye (1966b) and Huguenin-Elie et  al. 
(2003) modeled the root hair effect on the solute 

Fig. 4   a Schematic representation of the rhizosphere domain 
with symmetrical boundary and symmetric neighboring root. 
The green arrows illustrate the modeled advective solute flux 
that contradicts the actual physical flux, blue and red arrows. 
Assumption: 2�r

0

v
0

= 2�rv (conservation of water), the water 
flux at r0 is equal to the flux into the rhizosphere at r1. b Diffu-
sion only depletion profile of the classical rhizosphere model. c 
Advection-diffusion depletion profile, both with zero-flux outer 
boundary condition. d Simulated cumulative nutrient uptake 
of the root segment to illustrate how the uptake by the plant 

is influenced by the soil buffer power. Example parameters: 
Root radius r0 = 0.05  cm, the outer distance is r1 = 0.55  cm, 
Michaelis-Menten parameters, Imax  = 2·10−7  μmol  cm−2  s−1, 
Km = 0.005 mM, Cmin =  10−4 mM. Initial solute concentration 
0.012  mM, root hair radius rh = 0.0005  cm, root hair length 
lh = 0.2 cm, the number of root hairs on the segment surface of 
unit length Nh = 1000, soil buffer power b = 25, liquid diffusion 
D  = 10−7  cm2  s−1, θ = 0.3, soil tortuosity τ = 0.5, water 
flux velocity v

0

= 0 or v
0

= 10

−6 cm s−1 , respectively
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concentration in a so-called ‘hairy zone around the 
root’ and calculated uptake for both hairy and 
non-hairy zones separately. Although simple, the 
approach is likely to underestimate uptake.

Including a reaction term using a steady-state deple-
tion profile (approach 2) models a sink over the length 
of the root hairs (r = r0 to lh) in the transport equation. 
The uptake is calculated from the solute concentra-
tion at the root hair surface, Crh. This Crh is obtained 
by steady-state diffusive flux orthogonally between the 
root hair radius rh and an average Cℓ(r, t), as a Dirichlet 
boundary at the mid-distances, rh1, to neighboring root 
hairs (Fig. 5). The reaction term thus becomes a func-
tion of Cℓ(r, t) for r ≤ r0 + lh, where lh is the length of 
the average root hairs. Note that in steady-state, the time 
gradient is zero, but spatial gradients can be present. 
The transport equation towards r0 is still transient, and 

when numerically integrated, the uptake in steady-state 
by root hairs is updated per time- and spatial step.

The steady-state equations that are used are 
derived in Baldwin et  al. (1973) with and without 
advection for a single root. Bhat et  al. (1976) mod-
eled linear uptake by root hairs and used the diffusion 
equation (v = 0) since it is commonly assumed that 
the root hairs do not take up water. Itoh and Barber 
(1983) included root hairs after Bhat et al. (1976) but 
replaced linear uptake by Michaelis-Menten kinetics.

The approach assumes there is no competition 
among hairs and that, consequently, the outer bound-
ary concentration is constant and far away from the 
root hair surface ( rh12 ≫ rh

2 ). With this assump-
tion, the solution of the steady-state integration (eq. 
iii, Baldwin et  al. 1973) can be simplified by col-
lecting terms because rh12∕(rh12 − rh

2) → 1 . These 

Fig. 5   Root hairs. a Michaelis-Menten uptake, including 
efflux via C∗

�
∶= C

�
− Cmin . Zero-flux at outer boundary r1. 

The value rh1 is the mid-distance between root hairs, e.g. pair-
wise equidistant, r

h1
=

√

r�∕
(

2N
h

) . For root hairs, the orthogo-
nally radial steady-state diffusion can be used (derivation Bald-
win et  al. 1973), the flux over the root surface, at r0, is 
transient. b Numerical discretization of the 1D radial coordi-

nate system: a root segment of unit length gives the virtual cyl-
inder. Hence, the discretization is often shown as hollow cylin-
ders. c Example depletion profile of a nutrient in soil solution 
resulting from the model outlined in (a, b) after Itoh and Bar-
ber (1983). Parameters as in Fig.  4b but with b = 80. On the 
left: Pictures of wheat roots (from field) were taken by M. Watt 
at the CSIRO Black Mountain Microscopy Centre
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assumptions may be invalid for relatively densely 
spaced or thick root hairs. The inclusion of root hairs 
as a reaction term is macroscopic and couples differ-
ent spatial scales while ignoring the hairs as a physi-
cal boundary in the soil. It avoids using Cℓ for uptake 
by hairs directly and accounts for root hair deple-
tion, Crh < Cℓ, and holds in the simplified version if 
rh < rh1/1.65. We suggest using the non-simplified 
version (eq.  iii, Baldwin et  al.1973) as applied by 
Kuppe et al. (2022).

The homogenization theory (approach 3) is used 
to average spatially heterogeneous equations for 
root and root hair geometries and has similarities 
to approach (2) because it computes a sink for hairs 
(model 1 in Leitner et  al. 2010a). Both approaches 
(2) and (3) have a sink term in the macroscopic trans-
port equation and no sink beyond the root hair zone. 
Finer coordinates are scaled by l/L to coarser coordi-
nates: micro-structures at a microscopic scale l, the 
inter-hair-distance, are incorporated in the macro-
structure at macroscopic scale L, the axial length of 
the cylindrical root segment ( l ≪ L required). Leit-
ner et  al. (2010a) used Cartesian coordinates, and 
thus the distances between the root hairs, 2rh1, do not 
increase further away from the root surface. Also, if 
the solute is rather diffusive and the depletion zone 
is not narrow, a radial coordinate system seems more 
applicable. In the Cartesian coordinates, the distance 
at the surface r0 needs to assume to be comparable 
with the distance between the root hair tips at r0 + lh. 
That means the modeling error increases with root 
hair length. The method of homogenization was also 
applied to root hairs and diffusion of solutes within 
and between soil particles of sorbing soils (Zygalakis 
et  al. 2011) and dense cluster roots (Zygalakis and 
Roose 2012).

In describing geometry spatially explicit (approach 
4), Geelhoed et  al. (1997) address root hairs as the 
physical boundary in a 3D cylindrical simulation of 
the rhizosphere with root hairs. The root and root 
hairs were treated together as one geometry. However, 
the volume of the root hairs was neglected, and root 
hairs were still assumed straight with equal length. 
Geelhoed et  al. (1997) assumed that roots and root 
hairs have zero-sink boundary conditions and phos-
phate transport by diffusion. They added root hairs to 
a model by Hoffland et al. (1990) and compared this 
zero-sink diffusion-reaction model in 1D radial coor-
dinates with a 3D cylindrical version, (diffusion in r, 

φ, z direction) and concluded that the differences in 
cumulative uptake, simulated by the 1D and 3D mod-
els were usually less than 15%, with the largest devia-
tions after the longest run times of scenarios with 
low soil buffer powers. More recently, a three-dimen-
sional simulation of root hairs in the rhizosphere was 
implemented with even greater detail by including the 
pore-scale soil structure. Keyes et al. (2013) and Daly 
et  al. (2016) applied a finite element method to real 
soil-root synchrotron images and calculated uptake 
by root hairs using Michaelis-Menten kinetics. They 
conclude that root hair uptake in macroscopic rhizos-
phere models might be overestimated and depends not 
only on root hair morphology but also soil structure.

Root growth and development

New root cells are formed at the root apex and from 
thereon develop over time. This development includes 
cell elongation and differentiation, notably the forma-
tion of anatomical structures such as xylem, phloem, 
endo- and epidermis, pericycle, and root hairs from 
the epidermal cells. Root growth and development 
have been introduced in various ways. Most models 
define an absolute space reference (so-called Eule-
rian representation), where age and activity of the 
root might be modeled as time-dependent functions, 
for example, time-dependent exudation rates (Zelenev 
et al. 2000).

Alternatively, a moving root tip (so-called Lagran-
gian representation) can be taken as a frame of ref-
erence. In this representation, the soil is quasi flow-
ing through the domain as it moves with the root tip. 
This is achieved by an additional vertical advection 
term parallel to the growth direction. This advection 
term is not related to water flow but to the velocity 
of the root (2D, Kim and Silk 1999). Such a mov-
ing reference frame proved useful for simulating the 
activity of bacteria that attach to the root and ‘travel’ 
with the velocity of root elongation (1D, Dupuy and 
Silk 2016), as observed by Watt et al. (2003).

Besides longitudinal growth, radial thickening 
(secondary growth) may be considered. This results 
in a moving- or free inner boundary. Moving outer 
boundaries can be used to simulate changes in root 
length density (RLD) that occur over time as the 
root system grows (e.g. Reginato et  al. 1990; Regi-
nato et  al. 1993; Huguenin-Elie et  al. 2003; Crank 
and Gupta 1972). These moving boundaries become 
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especially apparent in root architectural models, 
which do not make assumptions about homogene-
ous root length distribution. For example, Postma 
and Lynch (2011) implemented both a moving inner 
boundary, related to secondary thickening, as well as 
a moving outer boundary, related to the local RLD, 
computed from the simulated growing root architec-
ture. Architectural root system simulations can be 
used to scale-up the rhizosphere models (assumed 
more or less locally independent), for example, by 
integrating the simulated nutrient uptake over the root 
system (Postma et al. 2017; Mai et al. 2019). The root 
system length, and its expansion, are often used to 
upscale rhizosphere models to compute whole plant 
or crop nutrient uptake. The upscaling methods are 
beyond the context here but are addressed shortly in 
a later section.

Modeling microorganism activity

Microorganisms can be modeled from the individual 
cell to the whole community using different model 
representations (Song et  al. 2014). In the rhizos-
phere context, microorganisms are typically modeled 
as trait-based ecosystems, which lump functional 
properties together at the community level. Hence, 
microorganisms were modeled by time dynamics 
(decay, turnover, and release) of the substrates (sol-
utes) they consume or produce (Toal et  al. 2000). 
Population dynamics of each species were modeled 
by integrating growth and death rates over time, typ-
ically defined as a function of substrate concentra-
tions and population size. In general, the motility of 
microorganisms is not considered in the rhizosphere 
modeling literature, with one exception (Dupuy and 
Silk 2016), where the aim was to investigate bacte-
rial attachment and colonization on the root surface, 
as visualized and described by Watt et  al. (2006a, 
2006b). We discuss motility in a section below as it 
is more common in models of microorganisms out-
side the context of the rhizosphere but, in our opin-
ion, should not be overlooked.

Substrate decay, release, or turnover

The change in population density over time of a net-
work of components (Cℓ,i in Fig. 6) used in microor-
ganism models can be described as an ODE system, 
dC/dt = R(C) (vectors: C and R, Fig. 6), made up of 

growth and death rates, which are typically substrate-
dependent. In a rhizosphere context, substrates might 
be root exudates, as carbon source of which the bac-
teria feed (Raynaud et  al. 2006; Toal et  al. 2000). 
The reactions of the cell metabolism are catalyzed by 
enzymes. Enzymes have maximal turnover rates and 
are often activated or inhibited by other effectors.

Decay terms have been modeled as first-order rate 
equations (irreversible reaction, Fig. 6), e.g. as expo-
nential decay (Raynaud 2010; Zhu et al. 2016). Non-
rhizosphere models have developed the ideas of expo-
nential decay further. For example, Yang and Janssen 
(2000); Sierra et al. (2012); Sierra and Müller (2015) 
modeled the decay of organic matter, also scaling the 
rate constants with temperature and moisture func-
tions. Zelenev et  al. (2006) stated that temperature 
and moisture fluctuations are particularly important 
for long-term predictions of mineralization. Water 
content is directly coupled to the decomposition of 
soil organic matter. The time scale is arguably longer 
than in the usual rhizosphere models predicting nutri-
ent uptake (Manzoni and Porporato 2007, 2009). 
When including microbial activity, the gas phase or 
temperature dependencies may be important. Tem-
perature is known to affect, among others, diffusion 
coefficients, growth rates, and kinetic parameters and, 
as such, seems important (Carter and Lathwell 1967; 
Michaletz 2018). However, to our knowledge, exist-
ing rhizosphere models did not allow for the effects 
of temperature, and hence, assume a time window 
with an average temperature, a short enough growth 
period, and no day-night temperature cycle.

Population dynamics of microorganisms 
in the rhizosphere

The population dynamics of microorganisms in the 
rhizosphere resulting from several organisms com-
peting over carbon, oxygen, and root exudates have 
been modeled by non-linear ODE systems (Fay-
bishenko and Molz 2013; Strigul and Kravchenko 
2006; Kravchenko et  al. 2004). To outline the 
structure and functionality of such models, we look 
at the model by Zelenev et al. (2000). Here, a sys-
tem of two ODEs describes the time dynamics of 
bacteria, model component C1 ≔ X [μg  cm-3 soil], 
and substrate, C2 ≔ S [μg  cm-3 soil]. The growth 
and death rates of bacteria are non-linear functions, 
μ(S) and δ(S) [h-1], of the substrate concentration. 
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In this model, the substrate input rate, FE, into the 
system is a time-dependent function. They assumed 
that the exudation rate declines exponentially along 
the length of the root.  The mathematical formula-
tion is,

(12)
�X(t)

�t
= (�(S) − �(S))X(t)
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Fig. 6   Modeling framework. Steps to construct a rhizosphere 
model: a Models can be characterized by concepts of con-
sidered physical entities and their processes. b Mathematical 
models realize the conceptual model, with spatial change (dark 
blue), time dynamics (blue), and reaction terms (red). If pre-
sent, chemotaxis is related to the gradient of an attractant or 
repellent, Cj, and can be substituted for V. The depicted diffu-
sion is called motility in the case of microorganisms (a pseudo-
component) and is the macroscopic formulation of random 

motion. c Full mathematical description: Define initial and 
boundary conditions, choose a coordinate system and dimen-
sion (implying assumptions). d Implementation of the math-
ematical model aims to find a solution within computational 
error bounds. Analytical solutions are often not available, and 
generally, a numerical solution is used. e Simulations are used 
to address research questions. f Model development becomes 
an iterative process if results lead to changes in earlier decision 
steps
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with system input, I(t) ≔ BGF + FE(t), where BGF 
defines a constant (background) substrate influx 
[μg h-1 cm-3], FE(t) is the exudation rate [μg h-1 cm-3], 
Kr is the fraction of dead biomass recycling to sub-
strate [−], Y is the yield coefficient for bacteria [μg 
carbon μg-1 carbon], and 

where μmax is the maximal relative growth rate of 
bacteria related to substrate concentration [h-1], KS 
its half-saturation constant [μg cm-3  soil solution] 
(μ(KS) = μmax/2), θ the volumetric water content, δmax 
is the maximal relative death rate of bacteria [h-1], Kd 
its half-saturation constant [μg  cm-3 soil solution], 
Emax is the maximal exudation rate [μg h-1 cm-3] and 
ET is the exudation time constant [h-1]. Eqs. (14) and 
(15) are Monod equations, mathematically equal to 
Michaelis-Menten kinetics (Monod 1949; Liu 2007).

This model can be expanded by chaining the 
Monod equations for additional substrates. Thus 
the growth and death rates are functions of the 
environment. Zelenev et  al. (2000, 2006) ignored 
diffusion and advection of the substrate and bacte-
ria in the rhizosphere. Models that include the dif-
fusion of substrate radially away from the root are 
presented by Newman and Watson (1977), Darrah 
(1991b), and Sung et  al. (2006). The transport of 
the substrate is modeled analogously to the concept 
of solute transport in soil described in the previ-
ous section. A partial differential equation (PDE) 
describes the diffusing substrate and is coupled to 
an ODE for the bacteria living off that substrate. A 
spatial distribution (gradient) of bacteria is given 
owing to the substrate profile that gives local dif-
ferences in growth rates. This model assumes bac-
teria do not move but only react with a certain point 
in space, which is tricky because, at an (infinitely 
small) point, there is practically no mass that can be 
absorbed as a substrate. The substrate is therefore 

(13)
�S(t)

�t
= −

(

�(S)∕Y + K
r
�(S)

)

X(t) + I(t),

(14)�(S) = �max

S
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(
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)

always taken from a certain environment. Its con-
centration would have to be correctly described 
using Dirac distributions (Kondrat et al. 2016). Spa-
tial discretization conveniently solves the volume 
issue but not the homogeneity within a volume.

Motility of microorganisms

Microorganisms in soil models refer, among other 
organisms, to bacteria (Keller and Segel 1971b; 
Lauffenburger et  al. 1982; Dupuy and Silk  2016), 
amoebae (Keller and Segel 1970, 1971a), and even 
relatively large nematodes (Feltham et  al. 2002). 
Few rhizosphere models consider the motility of 
microorganisms, but the broader literature on bac-
teria speaks about the motility of bacteria based on 
various mechanisms (Kearns 2010). Motility may 
be directed, especially through advection and chem-
otaxis, or with random direction if the microorgan-
ism cannot respond to chemo-gradients. At the cell 
level, this is described as tumbling. Macroscopi-
cally, the movement of the cells can be described by 
a model with a certain diffusion coefficient. Princi-
pally all cells can appear mobile as particles with D 
≈ 10-9  cm2 s-1 (assumed order, Lauffenburger et al. 
1982). The free organisms move along gradients 
of chemo-attractants towards the root (chemotaxis, 
e.g. to carbon exudates). For the radial transport on 
the root surface, other than longitudinal movement, 
chemotaxis was found to be important (Dupuy and 
Silk 2016).

The motility of the cells is described by an equa-
tion similar to the transport equation for solutes, 
except for the additional chemotaxis. Adler and 
Dahl (1967) and Segel et al. (1977) described motil-
ity using an effective diffusivity parameter distinct 
from chemotaxis (motility coefficient, here D – we 
used their definition in Fig. 6).

Thus, although the simulation of microorganisms 
is largely developed in the literature separately from 
that of solutes in the soil, at the rhizosphere level, 
we can recognize very similar transport processes. 
We can thereby consider solutes, substrates, and 
microorganisms as components that may be summa-
rized in a framework for categorizing rhizosphere 
models and simulated by a generalized transport 
equation.
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Collective framework: A general mathematical 
structure encompassing concepts of rhizosphere 
models

Despite the plurality of the different rhizosphere mod-
els for various applications presented in the literature, 
the models draw on similar concepts (physical, bio-
logical, chemical) mechanistically and phenomeno-
logically. They thereby share similar structures that fit 
into a general modeling template. Hence, new mod-
els can be developed using a typical four-step work-
flow in which the concept development, mathemati-
cal model, software implementation, and simulation 
studies proceed each other. Figure  6 synthesizes the 
previously reviewed rhizosphere models and other 
model components into a generalized mathematical 
framework. Experiments would suit the modeling 
according to this framework and vice versa (structure 
and parameters).

Conceptual model

The template in Fig. 6 highlights the commonalities 
among rhizosphere models as well as the simplifi-
cations by omissions of processes. It exposes prior 
implicit assumptions of zero gradients, zero param-
eters, or constant values. Expanding this general 
model increases complexity. Despite the similarities 
among the mathematical models, the generalized 
template leaves ample room for varying assump-
tions and concepts like different phases (e.g. adsorp-
tion, desorption) and chemical reactions (e.g. decay). 
This template shows N coupled solid and liquid phase 
components. Additional M components may specify 
microbial biomass in soil (e.g. gram carbon or cells), 
which are usually modeled as non-sorbed (e.g. New-
man and Watson 1977; Darrah 1991b, 1991c; Zele-
nev et al. 2000; Dupuy and Silk 2016).

The establishment of the conceptual model 
(Fig.  6a) starts with selecting the components. That 
is, what solutes or microorganisms are assumed to 
be of importance to the processes of interest in the 
rhizosphere. Simplifications here might leave out, for 
example, advection or spatial change. Complications 
might specify coupling among the components. The 
number of components present in the rhizosphere is 
in reality very large and must be reduced drastically 
to have a sufficiently simple model for which the 
parameter values can be determined (Fig. 7).

Mathematical model

We elaborate on parts (b) and (c) of the workflow 
in Fig. 6, where the hypotheses on involved compo-
nents (Cℓ,i, Cs,i) and processes (Fig. 6a) are realized 
in a mathematical model. In rhizosphere models, the 
space coordinate is usually r, along the radial axis 
orthogonal to the root surface. In some publications, 
the z-direction longitudinal to the root axis is consid-
ered (Darrah 1991c; Kim and Silk 1999; Dupuy and 
Silk 2016), and rarely all three space coordinates.

A mathematical model as a realization of concepts 
can be presented by a system of coupled equations 
with initial and boundary conditions and is thereby 
extensible. The classical rhizosphere models can be 
expanded to include interactions among rhizosphere 
components through the reaction terms. For exam-
ple, Schnepf et al. (2011), Schnepf and Roose (2006) 
added mycorrhizal fungi via a sink term – similar to 
the inclusion of root hairs.

The reaction term in rhizosphere models is of spe-
cial importance since coupling between various PDEs 
and ODEs is usually achieved with this term, which 
is arguably the most variable part (Fig. 6b). In rhizo-
sphere modeling, the time dynamics of the bacteria 
becomes the reaction part in the associated substrate 
transport PDE. For example, growth and death may 
be functions of a substrate and population size. If 
only reaction terms are considered (rates), we obtain 
ODEs in time (D∇2C = 0, v∇C = 0). ODE models 
assume that the spatial derivatives are negligible or 
simply not of interest.

Different orders of magnitude of time scales are 
coupled when steady-state processes are included 
in the transient equation for Cℓ. We gave examples 
of sorption, which either can be simulated as a slow 
process or assumed to equilibrate instantaneously. We 
reviewed sorption as an important example of a reac-
tion term that by itself can be formulated as an ODE 
and reversible reaction (Fig. 3).

Besides realizing interactions among components 
by coupling via reaction terms, coupling of gradi-
ents is possible, which we can call direct coupling, 
as the state variable of one model (e.g. fluid veloc-
ity) directly enters the other without integration (e.g. 
in the advection term). A prominent example is water 
flow, simulated with the Richards equation (not part 
of this framework) and coupled to a PDE for solute 
transport via the water potential gradient-dependent 
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flow rate. The soil water flux densities are used to 
compute the advective transport of solutes.

Inclusion of processes and components is not 
always achieved by including extra transport equa-
tions and coupling terms. As many processes appear 
similarly at the spatial and temporal macroscale, 
they might be implied in one term or parameter. For 
example, the soil buffer power, b, avoids having the 
adsorbed Cs as explicit model component by assum-
ing Cs proportional to Cℓ.

We summarize that the advection-diffusion-
reaction-motility equation in its general form can 

encompass most rhizosphere models, and most future 
rhizosphere models may be represented by a cou-
pled system of advection-diffusion-reaction-motility 
PDEs.

Software implementation

The common rhizosphere PDE is a parabolic ini-
tial-boundary-value-problem. Those general clas-
sifications help to choose the numerical method 
for solving the equation (Fig.  6d). The numerical 
method is important for accuracy of the solution, 
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Table 2   PDE models

Model, author, 
year

Topic / Application Mathematical realization of soil system Comments on imple-
mentation

 Boghi et al. 
(2018)

Prediction and 
sensitivity analy-
sis of uranium 
uptake by plants 
linked to soil 
acidity processes. 
The importance 
of soil sorption, 
speciation, and 
root parameters 
for the simulation 
of uranium.

solute exudate bacteria FORTRAN. Crank-
Nicolson method. 
Equilibrium calcula-
tions for reactions 
in solution with 
MINTEQ.

Reaction term ✓ 0 0
Advection 0* 0 0
Diffusion ✓ 0 0
Root: linear uptake, constant exudation rate
Dimension: 1D radial
Diffusion and advection* for uranium and pH. Chemical reaction 

terms and ODE for slow sorption. *) Advection is shown but set to 
zero.

 Gérard et al. 
(2017)

Phosphorus 
acquisition from 
hydroxyapatite 
in alkaline soil, 
owing to the 
uptake of phos-
phorus, calcium, 
nitrogen, potas-
sium, and pH 
change in the root 
zone.

solute exudate bacteria Fortran-C++. Non-
iterative sequen-
tially coupling to 
root architecture 
(ArchiSim-
ple). Reactive trans-
port model MIN3P 
(Mayer et al. 
2002). Soil 
discretization 
with 2D block 
centered finite vol-
ume method. 
Water dynamics: 
1D soil column and 
steady root profile.

Reaction term ✓ 0 0
Advection 0 0 0
Diffusion ✓ 0 0
Root: Michaelis-Menten sink term
Dimension: 2D soil column
Diffusion with the same coefficient for each solute. Zero-flux bound-

ary conditions were set at the top and the two sides of the 2D soil 
profile. Dirichlet boundary condition (fixed concentrations) at the 
bottom of the soil profile. The root system is represented as root 
surface densities in the control volumes of the soil model. Nutrient 
uptake is a sink term.

 De Parseval 
et al. (2017)

Interaction 
between nutrient 
accumulation 
zones. Exudation 
and phosphorus 
uptake. Increas-
ing root density.

solute exudate bacteria JAVA, within the 
3Worlds modeling 
platform. Used the 
PARIS model with 
modification of an 
100 × 100 squared 
grid of voxels that 
can be either soil 
or root. Forward 
time centered space 
(FTCS) scheme. 
Time step of 10 s.

Reaction term ✓ ✓ 0
Advection 0 0 0
Diffusion ✓ ✓ 0
Root: Michaelis-Menten sink term
Dimension: 2D soil cross section
Discrete 2D horizontal diffusive transport PDE. Roots distributed 

within a layer having the same geometry as the voxels, i.e. multiple 
roots in soil cross section. Roots take up phosphorus from adjacent 
soil voxels by Michaelis-Menten equation.

 Dupuy and 
Silk (2016)

Prediction of the 
use of resources 
available at the 
root tip by bac-
teria to grow and 
disperse in the 
soil and predic-
tion of the pat-
terns of bacterial 
distribution in the 
rhizosphere.

solute exudate bacteria Smoothed particle 
hydrodynamics 
method (SPH) with 
Python. Moving 
reference frame 
(referenced to the 
root tip).

Reaction term 0 ✓ ✓
Advection 0 (*) (*)
Diffusion 0 ✓ ✓
Root: carbon exudation at the tip
Dimension: 1D
Free bacteria moving by diffusion and chemotaxis.
*) The advection term is not advection of the bacteria but the velocity 

from the movement by the root tip.
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Table 2   (continued)

Model, author, 
year

Topic / Application Mathematical realization of soil system Comments on imple-
mentation

 Schnepf et al. 
(2012)

Exudation and 
phosphorus 
uptake coupled 
by competitive 
Langmuir sorp-
tion.

solute exudate bacteria Coupled to a model 
of a growing root 
system. Implementa-
tion in COMSOL

Reaction term ✓ ✓ 0

Advection 0* 0* 0

Diffusion ✓ ✓ 0

Root: Michaelis-Menten boundary, constant exudation rate
Dimension: 1D radial

Zero flux outer boundary.
(*) Advection is modeled but set to zero.

 Zygalakis 
and Roose 
(2012)

The effect of exu-
dation of citrate 
by cluster roots 
on the phosphate 
uptake. Phos-
phate and citrate 
absorption and 
solubilization, 
as in Ptashnyk 
et al. (2011), on 
particle surface

solute exudate bacteria A unit volume in 
COMSOL and 
macroscopic model 
in Matlab, finite 
difference method 
in space and ode15s 
for time integration. 
Non-dimensional-
ized

Reaction term ✓ ✓ 0
Advection 0 0 0
Diffusion ✓ ✓ 0
Root: Michaelis-Menten boundary, constant exudation rate
Dimension: 1D
Diffusion for phosphate, diffusion and first-order decay (microorgan-

ism consumption) for citrate. Modeling of cluster- and main root. A 
single porosity setting using homogenization theory.  

 Zygalakis 
et al. (2011)

Nutrient uptake 
by root hairs. 
Phosphate uptake 
calculated with 
dual and single 
porosity models 
gave significantly 
different results.

solute exudate bacteria COMSOL. Non-
dimensionalized.

Reaction term ✓ 0 0
Advection 0 0 0
Diffusion ✓ 0 0
Root: Michaelis-Menten boundary
Dimension: 1D
Fast and slow sorption reactions. Considers only a single soil particle 

between adjacent root hairs. Dual and single porosity models using 
homogenization theory.

 Raynaud 
(2010) (same 
approach 
as Leadley 
et al. (1997))

Estimation of 
exudation

solute exudate bacteria Written in 
C++. ∆r = 0.0166 
cm and 10 cm outer 
radius.

Reaction term 0 ✓ 0
Advection 0 ✓ 0
Diffusion 0 ✓ 0
Root: constant exudation rate
Dimension: 1D radial
"Barber-Cushman approach". First-order decay.

 PARIS 
(Raynaud 
and Leadley 
2004; 
Raynaud 
et al. 2008)

Prediction of nutri-
ent concentra-
tion and uptake 
rates for species 
in competi-
tion. Model 
parametrization 
for phosphate 
mobilization by 
citrate. Equilib-
rium analysis.

solute exudate bacteria Voxel based dis-
cretization of the 
horizontal soil sec-
tion with hexagonal 
grid. A voxel can be 
either soil or root.

Reaction term 0 0 0
Advection 0 0 0
Diffusion ✓ 0 0
Root: Michaelis-Menten sink term
Dimension: 2D soil cross section
Modification of Leadley et al. (1997). No root growth.
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Table 2   (continued)

Model, author, 
year

Topic / Application Mathematical realization of soil system Comments on imple-
mentation

 Schnepf 
and Roose 
(2006)

Quantification of 
the contribution 
of arbuscular 
mycorrhizal 
fungi to plant 
phosphate 
uptake.

solute exudate bacteria Implementation with 
Finite differences 
with a centered dis-
cretization in space 
and “Θ-method” in 
time.

Reaction term ✓ 0 0

Advection ✓ 0 0

Diffusion ✓ 0 0

Root: Michaelis-Menten boundary
Dimension: 1D (radial and planar)

Reaction term as sink: mycorrhizal hyphae with Michaelis-Menten 
uptake kinetics.

 Darrah and 
Staunton 
(2000)

Cation movement 
and long-term 
root uptake 
effect of cations, 
including root 
lifetime and root 
density

solute exudate bacteria

Reaction term ✓ 0 0
Advection 0 0 0
Diffusion ✓ 0 0
Root: Michaelis-Menten boundary
Dimension: 1D radial
Rapid and slow sorption. The diffusible concentration includes rapidly 

equilibrating concentrations of liquid and solid phases.

 Geelhoed 
et al. (1999)

Quantification 
of phosphate 
uptake, citrate 
exudation, 
and phosphate 
adsorption on 
goethite. The 
effect of acidi-
fication of the 
rhizosphere.

solute exudate bacteria Coupled nutrient 
uptake-chemical-
speciation model 
(prediction of the 
phosphate sorption 
isotherm using the 
CD-MUSIC model).

Reaction term ✓ ✓ 0
Advection ✓ ✓ 0
Diffusion ✓ ✓ 0
Root: zero-sink boundary
Dimension: 1D radial
Citrate in solution is degradable.

 Kim and Silk 
(1999)

Prediction of pH 
distribution in 
the rhizosphere. 
To show that 
inclusion of the 
root growth rate 
leads to a steady 
(time-invariant) 
pH pattern in the 
rhizosphere of 
the root growth 
zone.

solute exudate bacteria C++ using Overture 
libraries. Moving 
reference frameReaction term 0 0 0

Advection 0 (*) 0
Diffusion 0 ✓ 0
Dimension: 2D cylindrical
2D diffusion equation for H+.
*) The advection term is the velocity of root growth.

 Kirk (1999) 
and 
Huguenin-
Elie et al. 
(2003)

Prediction and 
sensitivity of 
concentration 
distance profiles 
of phosphate in 
the rhizosphere of 
rice plants excret-
ing citrate.

Model follows Nye 
(1983).

solute exudate bacteria FORTRAN. Central 
space discretiza-
tion. Time step 1 h, 
spatial step 0.1 mm. 
(Kirk, 1999), 0.01 
mm (Huguenin-Elie 
et al. 2003)

Reaction term ✓ ✓ 0
Advection 0 0 0
Diffusion ✓ ✓ 0
Root: linear uptake, constant exudation rate.
Dimension: 1D radial in Huguenin-Elie et al. (2003), comparison of 

1D radialand planar in Kirk (1999)
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Table 2   (continued)

Model, author, 
year

Topic / Application Mathematical realization of soil system Comments on imple-
mentation

 Leadley et al. 
(1997)

Estimation of 
ammonium and 
nitrate uptake.

solute exudate bacteria FORTRAN. Explicit 
Euler method.

Reaction term ✓ 0 0

Advection ✓ 0 0

Diffusion ✓ 0 0

Root: Michaelis-Menten boundary
Dimension: 1D radial

 Hoffland et al. 
(1990)

Prediction and sen-
sitivity analysis 
of nutrient uptake 
by a growing root 
system, consider-
ing increasing 
root density and 
inter-root compe-
tition. Validation 
of nitrate uptake 
with data of rape 
plant grown on 
quartz sand.

solute exudate bacteria CSMP-III simulation 
model. Variable 
time-step Runge-
Kutta 3 (Simpson-
rule).

Reaction term ✓ 0 0
Advection ✓ 0 0
Diffusion ✓ 0 0
Root: zero-sink reaction term
Dimension: 1D radial
Sink term represents nutrient uptake by the root in the center of a soil 

cylinder. In case no nitrate limitation occurred, nitrate uptake was 
overestimated by the model because of zero-sink assumption.

 Bouldin 
(1989)

Uptake of multiple 
ions: calcium, 
magnesium, 
potassium, 
nitrate, chloride, 
and sulfate.

Exchange of protons 
or hydroxide ions 
at the root-soil 
interface, constant 
partial pressure of 
carbon dioxide and 
non-exchangeable 
proton reaction 
with the soil cation 
exchange complex

solute exudate bacteria Modification of Pas-
sioura and Frere 
(1967)Reaction term ✓ 0 0

Advection ✓ 0 0
Diffusion ✓ 0 0
Root: uptake by root hair zone
Dimension: 1D radial
Stepwise transport without buffering, then steady-state reactions in 

soil sub-cylinders (electrical neutrality).

 Gardner et al. 
(1983)

Prediction of exu-
date movement

solute exudate bacteria

Reaction term 0 0 ✓
Advection 0 0 0
Diffusion 0 ✓ 0
Dimension: 1D radial
Decay term for the immobilization of substrate.
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Table 2   (continued)

Model, author, 
year

Topic / Application Mathematical realization of soil system Comments on imple-
mentation

 Itoh and Bar-
ber (1983)

Prediction and sen-
sitivity analysis 
of root nutri-
ent uptake (see 
Barber and Cush-
man 1981) with 
root hairs. Root 
hairs increase 
phosphorus 
uptake.

solute exudate bacteria Crank-Nicolson 
method

Reaction term ✓ 0 0

Advection ✓ 0 0

Diffusion ✓ 0 0

Root: Michaelis-Menten boundary
Dimension: 1D radial

Root hairs as reaction term.

 Nye (1983)

A model of dif-
fusion of two 
reacting solutes 
in soil, obtaining 
the “solubiliza-
tion factors”.

solute exudate bacteria Comparison of planar, 
radial, and spherical 
cases.Reaction term ✓* 0 0

Advection 0 0 0
Diffusion ✓ 0 0
*) Coupling over interaction coefficients in diffusion and in reaction: 

solubilization.

Nye (1981)

pH gradients in the 
rhizosphere. See 
also Nye (1972), 
soil only.

solute exudate bacteria Crank-Nicolson 
method written in 
BASIC. Discretiza-
tion Δr = 0.01 cm 
and Δt = [103, 104] s.

Reaction term 0 ✓ 0
Advection 0 ✓ 0
Diffusion 0 ✓ 0
Root: constant efflux
Dimension: 1D radial

Barber and 
Cushman 
(1981)

Prediction of root 
nutrient uptake

solute exudate bacteria Crank-Nicolson 
method

Reaction term ✓ 0 0
Advection ✓ 0 0
Diffusion ✓ 0 0
Root: Michaelis-Menten boundary
Dimension: 1D radial

Bhat et al. 
(1976)

Prediction of phos-
phate depletion 
by root and root 
hairs

solute exudate bacteria

Reaction term ✓ 0 0
Advection ✓ 0 0
Diffusion ✓ 0 0
Root: linear uptake
Dimension: 1D radial
Sink term for root hairs calculated after Baldwin et al. (1973).

Baldwin et al. 
(1973)

Prediction of 
uptake of solutes

solute exudate bacteria Stepwise steady-state

Reaction term ✓ 0 0
Advection ✓ 0 0
Diffusion ✓ 0 0
Root: linear uptake
Dimension: 1D radial

Plant Soil (2022) 474:17–5540



1 3
Vol.: (0123456789)

Table 2   (continued)

Model, author, 
year

Topic / Application Mathematical realization of soil system Comments on imple-
mentation

Nye and Mar-
riott (1969)

Prediction and sen-
sitivity analysis 
of the concentra-
tion at the root 
surface.

solute exudate bacteria Elliott ALGOL. 
Crank-Nicolson 
methodReaction term ✓ 0 0

Advection ✓ 0 0

Diffusion ✓ 0 0

Root: Michaelis-Menten boundary
Dimension: 1D radial

Passioura and 
Frere (1967)

Accumulation at 
root surface

solute exudate bacteria Crank-Nicolson 
method

Reaction term 0 0 0
Advection ✓ 0 0
Diffusion ✓ 0 0
Root: zero-flux boundary, no uptake
Dimension: 1D radial

Nye (1966a)

Prediction and sen-
sitivity analysis of 
nutrient uptake, 
varying soil solute 
concentration, 
buffer power, dif-
fusion coefficient, 
moisture, uptake 
rate, root radius 
and root hair zone.

solute exudate bacteria Used the solution of 
the diffusion equa-
tion by Carslaw and 
Jaeger (1959)

Reaction term 0 0 0
Advection 0 0 0
Diffusion ✓ 0 0
Root: linear uptake
Dimension: 1D radial

Olsen et al. 
(1962)

Phosphate diffu-
sion to the root

solute exudate bacteria

Reaction term 0 0 0
Advection 0 0 0
Diffusion ✓ 0 0
Root: constant uptake rate (per unit surface area) or constant concen-

tration at the surface 
Dimension: 1D

Bouldin 
(1961)

Calculation of dif-
fusion to the root

solute exudate bacteria Used the solution of 
the diffusion equa-
tion by Carslaw and 
Jaeger (1959)

Reaction term 0 0 0
Advection 0 0 0
Diffusion ✓ 0 0
Root: linear uptake
Dimension: 1D radial
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Table 3   ODE rhizosphere models

Model, author, year Topic / Application Mathematical realization of 
ODE systems

Comments on implementation

 Zhu et al. (2017)

Plant-microorganism nutrient 
competition

Steady-state. Competition 
theories.

 N-COM (Zhu et al. 2016), 
Nutrient COMpetition model

Soil biogeochemistry model to 
simulate carbon decomposi-
tion, nitrogen and phosphorus 
transformations, abiotic inter-
actions, and plant demands. 
Applied to tropical forest 
nutrient fertilization.

Multiple components with 
inhibitory effects:

(1) multiple substrates (e.g. 
ammonium and nitrate) shar-
ing one consumer, inhibit the 
binding between any specific 
substrate and the consumer.

(2) multiple consumers 
(e.g. plants, decomposing 
microorganisms, nitrifiers) 
sharing one substrate (e.g. 
ammonium), lower the prob-
ability of effective binding 
between any consumer and 
that substrate.

 Faybishenko and Molz (2013)

Prediction of microbial 
dynamics in the rhizosphere 
showing synchronization pat-
terns of temporal variations 
depending on the variation of 
root exudation.

4 coupled ODEs: Biomass of 
nitrogen fixers and competing 
microorganisms, substrate 
concentration in the rhizos-
phere, and oxygen content.

Simulation runs with Matlab 
ODE45 for time periods of 
30 days with 5000 time points. 
Diagnostic parameters of chaos 
determined with CSPW code.

 Strigul and Kravchenko (2006)

Prediction and validation of 
PGPR inoculation into the 
rhizosphere. Identifying 
if competition for limit-
ing resources between the 
introduced population and 
the resident microorganisms 
is the most important factor 
determining PGPR survival

4 coupled ODEs: Soluble 
organic compounds, molecu-
lar oxygen, concentrations of 
PGPR and resident microor-
ganisms

Mathematica 4.0 (Wolfram 
Research Inc.)

 Raynaud et al. (2006)

Quantification of the coupling 
of the nitrogen and carbon 
cycle in the rhizosphere. 
Ammonium, ammonia, 
organic nitrogen, bacteria, 
and plant, including plant 
exudates, degradation of 
soil organic matter and N 
mineralization, and predator 
biomass

ODEs for microorganisms. 
Spatiality is expressed by 
the number of sub-cylinders 
around the root. Influence of 
space was tested by simula-
tions with one (non-spatial-
ized) or 20 sub-cylinders 
(spatialized) for the same soil 
volume.

FORTRAN. Forward Euler 
method

 BACWAVE-WEB (Zelenev 
et al. 2006)

Prediction and sensitivity 
analysis of a substrate-based 
food web model

3 plant residue and 5 soil 
organic matter compartments, 
3 trophic groups of bacteria 
(copiotrophic, oligotrophic, 
and hydrolytic), and 2 
predatory groups (BFN and 
protozoa)

Model Maker (Cherwell Scien-
tific Publ. Ltd., Oxford, UK). 
Runge-Kutta method with 
variable time step
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but often the method used is not mentioned or only 
minimally described in the literature on rhizosphere 
models (Tables  2, 3, and 4). Most of the classical 
non-modular 1D rhizosphere models are integrated 
with the Crank-Nicolson method (Crank and Nicol-
son 1947), which is neither the fastest nor the most 
accurate method, in particular when the equation is 
stiff (Kuppe et  al. 2021). Stiff problems occur, for 
example, when the effective diffusion is rapid (e.g. 
for nitrate) as the gradients of the solute profile are 
smooth, but fluxes can still be high. Equation (1)  is 
generally solved numerically by discretization of the 
rhizosphere domain (e.g. Figure 5b) but is sometimes 
treated approximately analytical (Cushman 1979a, 
1979b, Cushman 1980a, 1980b; van Genuchten 1981; 
Roose et  al. 2001; Roose and Kirk 2009; Ou 2019). 
We advocate the use of numerical software packages 

and the use of suitable solvers as they are available 
for many programming languages.

Simulation studies

Once implemented, the model might be applied to 
several studies using different parameters (Fig.  6e). 
Parameters may be estimated by direct measure-
ments, literature values, or calibration (e.g. Kuzya-
kov and Xu 2013; Blagodatsky et al. 1998). A model 
can be evaluated, for example, by comparison against 
other versions or measured values to test a hypoth-
esis (model selection). Kirk et  al. (1999) compared 
rates of citrate secretion needed in their model to 
achieve a sufficient phosphate solubilization effect 
against measurements. Sensitivity analysis ques-
tions how sensitive the model results are to changes 

Table 3   (continued)

Model, author, year Topic / Application Mathematical realization of 
ODE systems

Comments on implementation

 BACWAVE (Zelenev et al. 
2000)

Prediction and sensitivity 
analysis of growth, death, 
autolysis, and regrowth of 
bacteria in response to a 
moving substrate source (root 
tip). Periodicity in growth 
and death of the microbial 
community in relation to 
readily utilizable substrate 
concentrations reasons wave-
like pattern.

ODEs for bacteria and 
substrate. Root movement 
is implicitly modeled by 
exponential decay of exudate 
over time

PASCAL 7.0. Runge-Kutta 4 
method

 Blagodatsky and Richter 
(1998)

Sensitivity analysis of carbon, 
nitrogen turnover and micro-
bial growth. Efficiency of 
microbial biosynthesis and 
maintenance are controlled 
by the carbon-nitrogen ratio 
and activity state of the 
biomass.

System of ODEs for water-
soluble substrate, microbial 
biomass (Cb), CO2, insoluble 
organic carbon (Ch), inorganic 
nitrogen (Ni), microbial 
biomass nitrogen (Nb), and 
insoluble organic nitrogen. 
Also a subsequent continu-
ous input of soluble carbon 
as root exudates as empirical 
differential equation (at larger 
time scales).

 Jones and Darrah (1993)

Prediction of re-sorption (into 
the root) of soluble carbon 
exudates by varying the rate 
of root exudation.

Components of exudation from 
root (partitioned into seed exu-
dation rate, root tip exudation 
rate, non-root tip exudation 
rate), soluble carbon in solu-
tion, carbon at the root-solu-
tion interface (re-sorption), 
and microbial biomass
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Table 4   Coupled PDE-ODE models

Model, author, year Topic / Application Mathematical realization of PDEs and coupled 
microorganism ODEs

Comments on imple-
mentation

RhizoMath (Szegedi et al. 
2008)

Coupled transport and 
speciation. Diffusion 
of potassium towards a 
single root. Simulation 
of the effect of organic 
root exudates (citrate) 
on competitive sorption 
of the oxidized forms of 
phosphorus and arsenic.

solute exudate bacteria Matlab (solver: pdepe 
where time integration 
is done with ode15s) 
and geochemical code 
Phreeqc

Reaction term ✓ 0 0
Advection ✓ 0 0
Diffusion ✓ 0 0
Root: constant, linear, Michaelis-Menten bound-

ary
Dimension: 1D radial
Solute transport coupled to mass action equations.

Sung et al. (2006)

Quantify microbial bio-
mass and predict influ-
ence by root exudates.

solute exudate bacteria

Reaction term 0 ✓ ✓
Advection 0 0 0
Diffusion 0 ✓ 0
Dimension: 1D radial
Diffusion of substrate from the root. Growth of 

microorganisms

Korsaeth et al. (2001)

Simulation of competi-
tion between plants and 
microorganisms for 
inorganic nitrogen.

solute exudate bacteria Use of the model 
SOIL_NO in Matlab. 
Central line-discretiza-
tion in 20 sublayers 
of the PDE and time 
integration by adaptive 
Runge-Kutta method 
in Matlab.

Reaction term ✓ 0 ✓
Advection 0 0 0
Diffusion ✓ 0 0
Root: Michaelis-Menten sink terms
Dimension: 1D vertical
Ammonium and nitrate are modeled by diffusion-

reaction equations and the oxidizing bacteria 
as ODE. The submodels 1 and 2 to calculate 
carbon-nitrogen turnover contain 16 ODEs.

Scott et al. (1995)

Prediction and sensitivity 
analysis of bacteria and 
substrate depth distribu-
tion in the wheat rhizo-
sphere. Aims to provide 
a basis for quantitative 
risk assessment follow-
ing the environmental 
release of genetically 
engineered microorgan-
isms.

solute exudate bacteria Runge-Kutta 4 in FOR-
TRAN 77. “Coarse” 
model: Vertical resolu-
tion Δz = 5 cm. Radial 
discretization is either 
in or out for a layer, 
i.e. Δr = 0.2 cm is the 
whole rhizosphere 
domain.

Reaction term 0 ✓ ✓
Advection 0 0 0
Diffusion 0 ✓ 0
Dimension: 2D, horizontal and vertical
Flux boundary. ODEs for two microbial classes, 

dry and wet. Depth of the root is given by an 
exponential growth function and bacteria are 
attached to this root surface.

Darrah (1991c)

Prediction of distributions 
of soluble carbon (e.g. 
root exudate), microbial 
biomass, and necromass.

solute exudate bacteria FORTRAN. ADI 
method

Reaction term 0 ✓ ✓
Advection 0 ✓ 0
Diffusion 0 ✓ 0
Dimension: 2D, radial and vertical
Soluble carbon (non-sorbed: b = � ). ODEs for 

necromass, insoluble plant-derived carbon, and 
living biomass as described in Darrah (1991b). 
Reaction term not shown in Darrah (1991c).
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in the model parameters or input values. Thereby, 
it elucidates feasible simplifications and identifies 
key processes that describe most of the variance in 
the results. Mathematically, sensitivity to a variable 
requires differentiation of the model for the variable. 
However, in rhizosphere modeling, sensitivity analy-
sis has been achieved by comparing simulation results 
for which the parameter was varied. For example, 
Kuppe et al. (2022) estimated the relative importance 
of model parameters for phosphate uptake by upland 
rice in strongly sorbing soil, where uptake became 
sensitive to r1 when small enough (increasing RLD). 
Silberbush and Barber (1983) investigated phosphate 
uptake by maize, showing that uptake was insensitive 
to Cmin, r1, and v0. Hence, in this case, uncertainty in 
these parameters was not of concern, and the model 
could be reduced by excluding advection and setting 
Cmin = 0.

Connecting models to experimentation

Experimentation is needed for parameterization, vali-
dation, and verification of results (e.g. Claassen et al. 
1986; Zelenev et  al. 2000; Strigul and Kravchenko 
2006). The model is calibrated and validated for a 
certain parameter range that is also determined by the 
applied assumptions, like the soil buffer power, which 
is constrained by soil conditions. Toal et  al. (2000), 
for example, discussed the challenges in calibration 
of rhizosphere carbon flow models. They found that 
rhizodeposition is not well defined, experimental data 
sets are missing essential information, and often use 
non-comparable units.

Sometimes validation of models comes from 
experiments where the medium was stirred or rapidly 

diffused (roots in hydroponics or agar), such that spa-
tial variation is negligible. Therefore, ODE models 
can be applied to that data. Model validation, how-
ever, is often understood as a demonstration that the 
model predictions are close to measurements, and this 
may provide circumstantial evidence that the model 
can be used for predicting and sensitivity analysis. 
This kind of model validation does not inform the 
researcher about the validity of the assumptions or 
concepts. A model represents a theory or hypothesis. 
Similar to the null hypothesis in statistics, we can-
not exclude other processes or explanations just from 
matching the model output to data only. It is impor-
tant to validate as many state variables as experimen-
tation permits. For example, when citrate concentra-
tions are simulated to predict phosphate transport 
and uptake, the predicted citrate concentrations can 
be validated. Predictive models can, however, help 
to expand mechanistic understanding. They are espe-
cially helpful in the falsification of hypotheses by 
excluding the importance of certain processes (‘loop 
back’ in the modeling cycle, Fig. 6).

Final remarks and future directions

Knowledge-gain by interpretation of experimental or 
in-silico results relies on the assumptions and con-
cepts made. We reviewed how various rhizosphere 
processes have been modeled across the disciplines 
of soil science, botany, and microbial ecology. The 
classical rhizosphere models have their origins in 
the works of Bouldin, Barber, and Nye (Fig. 2). The 
majority of rhizosphere model publications are on the 
diffusion and uptake of phosphorus (Table 1). Many 

Table 4   (continued)

Model, author, year Topic / Application Mathematical realization of PDEs and coupled 
microorganism ODEs

Comments on imple-
mentation

Newman and Watson 
(1977)

Prediction of substrate 
concentrations coupled 
with microbial concen-
tration.

solute exudate bacteria Crank-Nicolson method 
with   ∆r = 0.0045 
cm and ∆t = 0.25, 
∆t = 0.125.

Reaction term 0 ✓ ✓

Advection 0 0 0

Diffusion 0 ✓ 0

Dimension: 1D radial

Diffusion of substrate concentration. ODE for 
microbial concentration
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of the spatially explicit rhizosphere models ignore 
microorganisms and mycorrhizal fungi (Fig.  7). In 
contrast, the more ecological-oriented models gener-
ally ignore space: the motility of microorganisms and 
the structure of the root system (Fig. 1).

Limitations of the classical rhizosphere models

In the past, the radially symmetrical rhizosphere 
models ignored root morphology and focused on sol-
ute transport to the root. The root was represented as 
a cylinder, and root hairs were often not modeled. A 
boundary condition represented the root, and the soil 
was hitherto considered the most limiting factor for 
plant nutrition (see zero-sink boundary condition, i.e. 
transport in soil limits the uptake of nutrients and is 
not regulated by the root), and the endo-rhizosphere 
(inside the root) was ignored for reasons of simplifi-
cation. Solute concentration is considered to act as a 
signal influencing the kinetic uptake parameters. For 
example, a Michaelis-Menten constant Km of ion-car-
rier complexes in plant roots for different concentra-
tions and types of solutes. The mechanisms are still 
poorly understood and constant kinetic parameters are 
assumed in time. Alternatives are discussed by Grif-
fiths and York (2020).

The conventional segment-based rhizosphere mod-
els are local and consider a virtual root cylinder of unit 
length. This implies two assumptions about the larger 
root system and soil scale: (1) that the root only responds 
locally, and (2) that there are homogeneous soil condi-
tions in the rhizosphere, including axial symmetry.

In the assumption (1) that the root responds 
locally, the inner boundary conditions are functions 
(e.g. Michaelis-Menten type) of the solute concentra-
tion at the root surface, Cℓ(r0, t). This allows for local 
responses but ignores systemic plant regulation to the 
local uptake. Different extensions of Michaelis-Menten 
type uptake according to their time scales and plant 
feedback mechanisms appear possible, e.g. nitrogen 
regulation on leaf photosynthesis (Le Bot et al. 1998).

Combining rhizosphere models to a growing root 
and whole root systems is addressed in functional-struc-
tural plant models. The homogeneous soil conditions 
do not have to apply root-system-wide if the classical 
models are implemented in a heterogeneous root archi-
tecture model. The single segment models, each with a 
local rhizosphere, are coupled to root architecture and, 
thereby, upscaled (Postma and Lynch 2011; Dunbabin 

et  al. 2013). Integration of a growing root over time 
may estimate nutrient uptake. Three-dimensional root 
architectural models are used in combination with the 
one-dimensional radial transport models (e.g. Postma 
et  al. 2017). However, simplified upscaling has also 
been achieved by integration of root growth functions 
(e.g. exponential or logistic, Cushman 1979a; Barber 
and Cushman 1981; Itoh and Barber 1983). This simple 
scaling up to the plant scale smooths the variation over 
time as root systems are at any moment in time popula-
tions of younger and older root segments (Kuppe et al. 
2022). Modeling approaches for upscaling rhizosphere 
processes to the whole-plant scale were reviewed by 
Darrah et al. (2006).

With the assumption (2) that there are homoge-
neous soil conditions in the rhizosphere, including 
axial symmetry, rhizosphere models not only lack 
connection to the larger scale (assumption 1), they 
also assume homogeneity at lower scales, notably, 
the pore structure of the soil. Adjusting an analyti-
cal formulation of steady-state  for nutrient and water 
uptake, de Willigen et  al. (2018) addressed partial 
root-soil contact in the rhizosphere. Helliwell et  al. 
(2019) observed an increase in soil porosity in the 
direct vicinity of a root, where the deformation of the 
rhizosphere was temporally and spatially heterogene-
ous due to root growth. The pore-scale soil-packing 
influences the geometry of root hairs, which may be 
important in low moisture conditions and for strongly 
sorbed nutrients (Keyes et al. 2017; Koebernick et al. 
2017). Recent studies, however, show that macroscale 
averaging of diffusion was valid for most scenarios 
(Masum et al. 2016; Daly et al. 2018).

At the rhizosphere scale, water distribution and its 
flow rate are usually assumed homogeneous as well. A 
lot of the processes in the rhizosphere are influenced 
by water (see review by Vereecken et al. 2016). Macro-
scopic water flow and solute transport to the local scale 
have been modeled (Bar-Yosef et  al. 1980; Roose and 
Fowler 2004; Tournier et al. 2015; Mai et al. 2019; Fang 
et  al. 2019; Ruiz et  al. 2020). However, gradients in 
water potential around roots are yet a challenging topic 
(Carminati et al. 2016; Schwartz et al. 2016). Some have 
simulated the effect of root exudates and soil pore struc-
ture on water distribution in the rhizosphere (Naveed 
et  al. 2018; Cooper et  al. 2018; Aravena et  al. 2011, 
2014). Recently, Landl et al. (2021) showed the effect of 
radial changes in bulk density and exudate concentration 
(mucilage) on rhizosphere water flow and root water 
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uptake, and as such, the rhizosphere models may need 
updating. Root-induced feedback can be implemented 
into the suggested framework, for example, as cou-
pling to diffusion or reaction rates. Nietfeld and Prenzel 
(2015) coupled the diffusion coefficient to ion concen-
trations in the soil solution, and Kuppe et al. (2022) cou-
pled soil sorption rates to root-induced pH change.

Parameterization is challenging

The mechanistic modeling approach has led to poten-
tially redundant processes. Therefore it is important 
to fix (using measured data) as many parameters as 
possible before fitting or estimating other unknown 
parameters. For example, the transport equation of the 
classical rhizosphere models, eq. (3)  is over-param-
eterized for the solute concentration, Cℓ. The same 
solute concentration profile can be obtained over the 
soil buffer power, with fixed effective diffusion coef-
ficient and scaled maximal influx rate, Imax (in case of 
a Michaelis-Menten inner boundary), and v0, respec-
tively (Kuppe et al. 2021). Despite the depletion pro-
files of Cℓ being the same in this case, the uptake is 
not. An increase in soil buffer power increases the 
total concentration if the solute concentration, Cℓ, is 
kept constant, and despite the (1/b)-th slower transport 
rates, the root segment would have a higher cumula-
tive uptake because of the instantaneous replenish-
ment from solid phase to liquid phase (Fig. 3d). This 
implies higher total C and higher uptake eventually 
with the same Cℓ. Similarly, functional redundancy 
among microbes is an important topic in soil ecology. 
If we want to have mechanistic models to understand 
plant nutrient acquisition by roots and its interac-
tions in soils, over-parameterizing of the model seems 
inevitable. This means we need measurements that 
distinguish observed phenomena and provide a basis 
for parameterization of modeled processes as well as 
validation of intermediate outcomes.

Extending models

Rhizosphere modeling draws on concepts of transport 
developed for models at the larger agrosphere scale. 
Recently, hydro-biogeochemical modeling includes 
multiple important components, in particular soil 
hydraulics and chemical reactions. The coupled chemi-
cal complexation models are in steady-state, and there-
fore, the equilibrium constants from databases are 

approximations to rhizosphere conditions. However, 
the complexity of the rhizosphere and the coupling of 
models that are developed for different scales and vali-
dation by data remains challenging.

On a finer scale, there is the modeling of metabolic 
networks and microbial communities (Perez-Garcia et al. 
2016), which eventually will be needed for a mechanis-
tic understanding of the rhizosphere. As mechanisms are 
often poorly understood, there is a need for joint research 
of experiments in soil and in-silico. This is especially 
apparent for the emerging topic of plant growth-pro-
moting bacteria (PGPR) (Strigul and Kravchenko 2006; 
Rosier et al. 2018). Okutani et al. (2020) demonstrate this 
nicely by modeling rhizosphere solute and water distribu-
tion, exudation of daidzein by a single cylindrical root, 
and combining the analysis with the extraction of bacte-
rial DNA showing different community compositions. 
To our knowledge, there is no rhizosphere model about 
hormones, albeit experimental research. We suggest the 
bio-phase (e.g. bacteria) as a mostly overlooked rhizos-
phere model component. Future rhizosphere models may 
include both more ecto-rhizosphere factors and the bio-
logical endo-rhizosphere factors.

Conclusion

Concepts and foundations of rhizosphere modeling 
build a base for biologists and modelers in trait dis-
covery and application to plant and soil ecosystems. 
Assumptions of the processes in the rhizosphere eco-
system are a crucial part of modeling and are shown 
in this review. We conclude that despite the large vari-
ation in rhizosphere models and model applications, 
most models can be represented as specific imple-
mentations of a more general rhizosphere modeling 
framework (Fig. 6). This general modeling framework 
may be used as a starting point for developing new 
rhizosphere models, which may address current gaps, 
including (1) a need for extended linking and cou-
pling between soil ecology, physics, and chemistry; 
and (2) consideration of microorganisms, their motility 
and spatial relevance in soil ecology models. To con-
nect experimental systems and theoretical concepts, 
we advocate a workflow for future rhizosphere model 
development in which researchers distinguish the con-
ceptual model, the mathematical model, and model 
implementation from studies that apply models to par-
ticular research questions.
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Glossary

Classical rhizosphere model(s)

The classical rhizosphere models consist of a 1D 
partial differential equation (PDE) for transport of 
a single solute radially symmetrical to a single root 
segment of unit length. They can differ in the applied 
boundary conditions.

Concepts (Conceptual Model)

Models do not need to be expressed mathematically 
in the beginning; they can be conceptualized first. The 
concepts can be communicated using mathematics.

Dynamics

A model considers dynamics when transient (physi-
cal, chemical, biological) processes are included, 
i.e. time-dependent phenomenons, dC/dt ≠ 0, in 
contrast to steady-state where dC/dt = 0.

Framework

Here, a collective and generalized mathematical 
outline for constructing rhizosphere models, includ-
ing a mathematical template, Fig. 6.

Mechanism(s)

Mode of action(s) (of rhizosphere components) rel-
ative to the scale of interest.

Model

Here, deterministic mathematical model (e.g. as differ-
ential equation(s) including initial and boundary condi-
tions): A simplified description of a system in nature.

Rhizosphere

The rhizosphere is the influence-sphere of the roots, 
Hiltner (1904), who considered nitrogen-fixing bac-
teria. The definition later extended to “endorhizos-
phere” (Balandreau and Knowles 1978), “rhizoplane” 
(Clark 1949), and “ectorhizosphere” (Lynch 1987; 
York et al. 2016). Classical rhizosphere models have 
the rhizoplane (root) as boundary conditions and the 
ectorhizosphere (soil) as simulation domain.

Validation

Validation is the method to compare model predictions 
against experimental data (‘fit for purpose’), whereas 
verification is associated with the correctness of the 
implementation or assumptions.
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