Home > Publications database > Ethical Implications of e-Health Applications in Early Preventive Healthcare > print |
001 | 909104 | ||
005 | 20230404095114.0 | ||
024 | 7 | _ | |a 10.3389/fgene.2022.902631 |2 doi |
024 | 7 | _ | |a 2128/31674 |2 Handle |
024 | 7 | _ | |a 35899190 |2 pmid |
024 | 7 | _ | |a WOS:000830175800001 |2 WOS |
037 | _ | _ | |a FZJ-2022-03014 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Stake, Mandy |0 P:(DE-Juel1)187564 |b 0 |e Corresponding author |
245 | _ | _ | |a Ethical Implications of e-Health Applications in Early Preventive Healthcare |
260 | _ | _ | |a Lausanne |c 2022 |b Frontiers Media |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1660228427_1379 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a As a means of preventive medicine early detection and prevention examinations can identify and treat possible health disorders or abnormalities from an early age onwards. However, pediatric examinations are often widely spaced, and thus only snapshots of the children's and adolescents' developments are obtained. With e-health applications parents and adolescents could record developmental parameters much more frequently and regularly and transmit data directly for ongoing evaluation. AI technologies could be used to search for new and previously unknown patterns. Although e-health applications could improve preventive healthcare, there are serious concerns about the unlimited use of big data in medicine. Such concerns range from general skepticism about big data in medicine to specific challenges and risks in certain medical areas. In this paper, we will focus on preventive health care in pediatrics and explore ethical implications of e-health applications. Specifically, we will address opportunities and risks of app-based data collection and AI-based data evaluation for complementing established early detection and prevention examinations. To this end, we will explore the principle of the best interest of the child. Furthermore, we shall argue that difficult trade-offs need to be made between group benefit on the one hand and individual autonomy and privacy on the other. |
536 | _ | _ | |a 5255 - Neuroethics and Ethics of Information (POF4-525) |0 G:(DE-HGF)POF4-5255 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Heinrichs, Bert |0 P:(DE-Juel1)166268 |b 1 |
773 | _ | _ | |a 10.3389/fgene.2022.902631 |g Vol. 13, p. 902631 |0 PERI:(DE-600)2606823-0 |p 902631 |t Frontiers in genetics |v 13 |y 2022 |x 1664-8021 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/909104/files/Stake_Ethical%20implications%20of%20e-health%20applications%20in%20early%20preventive%20health....pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/909104/files/fgene-13-902631.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:909104 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)187564 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)166268 |
910 | 1 | _ | |a Universität Bonn |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)166268 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5255 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-05-04 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT GENET : 2021 |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-05-04T10:15:44Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-05-04T10:15:44Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-05-04T10:15:44Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-08 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-08 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|