000909129 001__ 909129
000909129 005__ 20240313103133.0
000909129 0247_ $$2Handle$$a2128/31637
000909129 037__ $$aFZJ-2022-03029
000909129 041__ $$aEnglish
000909129 1001_ $$0P:(DE-Juel1)176594$$aJiang, H.-J.$$b0$$ufzj
000909129 1112_ $$aNEST Conference 2022$$cvirtual$$d2022-06-23 - 2022-06-24$$wvirtual
000909129 245__ $$aModeling spiking networks with neuron-glia interactions in NEST
000909129 260__ $$c2022
000909129 3367_ $$033$$2EndNote$$aConference Paper
000909129 3367_ $$2BibTeX$$aINPROCEEDINGS
000909129 3367_ $$2DRIVER$$aconferenceObject
000909129 3367_ $$2ORCID$$aCONFERENCE_POSTER
000909129 3367_ $$2DataCite$$aOutput Types/Conference Poster
000909129 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1661153709_727$$xAfter Call
000909129 500__ $$aReferences[1] Lines J et al. (2020) Astrocytes modulate sensory-evoked neuronal network activity. Nat Commun. 11:3689.doi:10.1038/s41467-020-17536-3.[2] Zisis E et al (2021) Digital reconstruction of the neuro-glia-vascular architecture. Cereb. Cortex, 2021;00:1-18[3] Bazargani N and Attwell D. (2016) Astrocyte calcium signaling: the third wave. Nat. Neurosci. 19(2):182-9.doi: 10.1038/nn.4201[4] Linne M-L et al. (2022) Neuron–Glia Interactions and Brain Circuits. In: Giugliano, M., Negrello, M.,Linaro, D. (eds) Computational Modelling of the Brain. Advances in Experimental Medicine and Biology, vol1359. Springer, Cham. https://doi.org/10.1007/978-3-030-89439-9_4[5] Manninen T et al. (2018) Front. Neuroinf. 12:20. doi.org/10.3389/fninf.2018.00020
000909129 520__ $$aRecent experimental evidence suggests an active roles of astrocytes in a number of brain functions and demon-strates coordinated neuronal and astrocytic activity in vivo [1]. In the cortex, astrocytes form non-overlappingdomains, each containing several hundreds of neurons and ~100,000 synapses [2]. Astrocytic processes arein close contact with synaptic terminals and affect synaptic transmission, plasticity, and neuronal excitability[3, 4]. Understanding the role of astrocytic mechanisms in brain functions and dysfunctions requires open-access tools for model implementation, simulation, and analysis. In the past decade, hundreds of new modelswith some form of neuron-astrocyte interaction dynamics have been proposed. However, their implementa-tion is rarely shared and not sufficiently documented to reproduce the findings [4, 5]. We developed a newmodule in the NEST simulator that allows efficient implementation and simulation of large neuron-astrocytepopulations. This includes an astrocyte model with internal calcium dynamics, a synapse model to commu-nicate between astrocytes and postsynaptic neurons, and user-friendly and efficient high-level connectivityfunctions, which allow probabilistic or deterministic pairing of neurons and astrocytes. This new module willimprove the convenience, reliability, and reproducibility of computational studies involving neuron-astrocyteinteractions.
000909129 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000909129 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000909129 7001_ $$0P:(DE-HGF)0$$aAćimović, J.$$b1
000909129 7001_ $$0P:(DE-HGF)0$$aManninen, T.$$b2
000909129 7001_ $$0P:(DE-Juel1)171475$$aStapmanns, J.$$b3$$ufzj
000909129 7001_ $$0P:(DE-HGF)0$$aLehtimäki, M.$$b4
000909129 7001_ $$0P:(DE-HGF)0$$aLinne, M.-L.$$b5
000909129 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, M.$$b6$$ufzj
000909129 7001_ $$0P:(DE-Juel1)138512$$avan Albada, S. J.$$b7$$eCorresponding author$$ufzj
000909129 8564_ $$uhttps://juser.fz-juelich.de/record/909129/files/Astrocytes_graphical_abstract_JA_comments.pdf$$yOpenAccess
000909129 8564_ $$uhttps://juser.fz-juelich.de/record/909129/files/Astrocytes_slides_JA_comments.pdf$$yOpenAccess
000909129 909CO $$ooai:juser.fz-juelich.de:909129$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000909129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176594$$aForschungszentrum Jülich$$b0$$kFZJ
000909129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171475$$aForschungszentrum Jülich$$b3$$kFZJ
000909129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b6$$kFZJ
000909129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b7$$kFZJ
000909129 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000909129 9141_ $$y2022
000909129 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909129 920__ $$lyes
000909129 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x0
000909129 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000909129 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2
000909129 9801_ $$aFullTexts
000909129 980__ $$aposter
000909129 980__ $$aVDB
000909129 980__ $$aUNRESTRICTED
000909129 980__ $$aI:(DE-Juel1)INM-10-20170113
000909129 980__ $$aI:(DE-Juel1)INM-6-20090406
000909129 980__ $$aI:(DE-Juel1)IAS-6-20130828
000909129 981__ $$aI:(DE-Juel1)IAS-6-20130828