001     909129
005     20240313103133.0
024 7 _ |a 2128/31637
|2 Handle
037 _ _ |a FZJ-2022-03029
041 _ _ |a English
100 1 _ |a Jiang, H.-J.
|0 P:(DE-Juel1)176594
|b 0
|u fzj
111 2 _ |a NEST Conference 2022
|c virtual
|d 2022-06-23 - 2022-06-24
|w virtual
245 _ _ |a Modeling spiking networks with neuron-glia interactions in NEST
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1661153709_727
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a References[1] Lines J et al. (2020) Astrocytes modulate sensory-evoked neuronal network activity. Nat Commun. 11:3689.doi:10.1038/s41467-020-17536-3.[2] Zisis E et al (2021) Digital reconstruction of the neuro-glia-vascular architecture. Cereb. Cortex, 2021;00:1-18[3] Bazargani N and Attwell D. (2016) Astrocyte calcium signaling: the third wave. Nat. Neurosci. 19(2):182-9.doi: 10.1038/nn.4201[4] Linne M-L et al. (2022) Neuron–Glia Interactions and Brain Circuits. In: Giugliano, M., Negrello, M.,Linaro, D. (eds) Computational Modelling of the Brain. Advances in Experimental Medicine and Biology, vol1359. Springer, Cham. https://doi.org/10.1007/978-3-030-89439-9_4[5] Manninen T et al. (2018) Front. Neuroinf. 12:20. doi.org/10.3389/fninf.2018.00020
520 _ _ |a Recent experimental evidence suggests an active roles of astrocytes in a number of brain functions and demon-strates coordinated neuronal and astrocytic activity in vivo [1]. In the cortex, astrocytes form non-overlappingdomains, each containing several hundreds of neurons and ~100,000 synapses [2]. Astrocytic processes arein close contact with synaptic terminals and affect synaptic transmission, plasticity, and neuronal excitability[3, 4]. Understanding the role of astrocytic mechanisms in brain functions and dysfunctions requires open-access tools for model implementation, simulation, and analysis. In the past decade, hundreds of new modelswith some form of neuron-astrocyte interaction dynamics have been proposed. However, their implementa-tion is rarely shared and not sufficiently documented to reproduce the findings [4, 5]. We developed a newmodule in the NEST simulator that allows efficient implementation and simulation of large neuron-astrocytepopulations. This includes an astrocyte model with internal calcium dynamics, a synapse model to commu-nicate between astrocytes and postsynaptic neurons, and user-friendly and efficient high-level connectivityfunctions, which allow probabilistic or deterministic pairing of neurons and astrocytes. This new module willimprove the convenience, reliability, and reproducibility of computational studies involving neuron-astrocyteinteractions.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
700 1 _ |a Aćimović, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Manninen, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Stapmanns, J.
|0 P:(DE-Juel1)171475
|b 3
|u fzj
700 1 _ |a Lehtimäki, M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Linne, M.-L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Diesmann, M.
|0 P:(DE-Juel1)144174
|b 6
|u fzj
700 1 _ |a van Albada, S. J.
|0 P:(DE-Juel1)138512
|b 7
|e Corresponding author
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/909129/files/Astrocytes_graphical_abstract_JA_comments.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/909129/files/Astrocytes_slides_JA_comments.pdf
909 C O |o oai:juser.fz-juelich.de:909129
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)138512
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 0
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 2
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21