Modeling spiking networks with neuron-glia interactions in NEST June 24, 2022 ### **Neuron-astrocyte interactions** - Astrocytes can sense synaptically released molecules and release gliotransmitters that can modulate neuronal excitability and synaptic transmission - A standardized and reliable modeling tool is required for the computational study of neuron-astrocyte interactions Bazargani & Attwell, 2016 ## NEST vs. other tools for astrocyte modelling | Simulator | ARACHNE | ASTRO | Brian 2 | NEST | STEPS | |--------------------------------------|---|---|--------------------------------|------------------------------------|---| | Modeling formalism, supported models | neuron-glia
networks | detailed
synapse and multi-
compart.
cell models | neuron-glia
networks | neuron-glia
networks | detailed
synapse and multi-
compart.
cell models | | Programming language | C++, MATLAB | NEURON, C++,
MATLAB | Python | Python, C/C++ | Python, C/C++ | | Web address | https://github.c
om/LeonidSavt
chenko/Arachn
e | https://github.com/LeonidSavtchenko/Astro | https://briansi
mulator.org | https://www.nest-
simulator.org | http://steps.sourcefor
ge.net/STEPS/default.
php | | Reference | Aleksin et al. (2017) | Savtchenko et al. (2018) | Goodman and
Brette (2008) | Gewaltig and Diesmann (2007) | Hepburn et al. (2012) | NEST's advantages: Open source, standardized, optimized, well-documented, good for large-scale simulations and parallel computing Linne et al. (2022) Neuron-Glia Interactions and Brain Circuits. In: Computational Modeling of the Brain. https://doi.org/10.1007/978-3-030-89439-9_4 Manninen et al. (2018) Front. Neuroinform. vol. 12. https://doi.org/10.3389/fninf.2018.00020 #### Astrocytes in NEST: Modeled glial mechanism - Presynaptically released glutamate that spills from the synaptic cleft is sensed by a proximal astrocyte - This triggers astrocytic mechanisms that lead to increase of intracellular calcium concentration - [Ca2+] increase induces a slow inward current (SIC) to the postsynaptic neuron - Synaptic parameters: c_spill, weight_sic ### **Astrocytes in NEST: Connectivity builder** - p_astro: the probability of each synapse to be paired with an astrocyte - n_neighbor_astrocytes: the maximal number of astrocytes that can be connected to a postsynaptic neuron ``` nest.Connect(pre_neurons, post_neurons, conn_spec={ "rule": "pairwise_bernoulli_astro", "astrocyte": astrocytes "p": #, "p_astro": 1, "n_neighbor_astrocytes": 1 }) ``` ### **Simulation results** • N_{neuron} = N_{astrocyte} = 100, p_astro = 0.1 or 0.5, n_neighbor_astrocytes = 2 ### **Simulation results** • N_{neuron} = N_{astrocyte} = 100, p_astro = 0.1 or 0.5, n_neighbor_astrocytes = 10 ### **Acknowledgements** #### Collaborators - Jugoslava Aćimović, Mikko Lehtimäki, Tiina Manninen, Marja-Leena Linne - Tampere University, Tampere, Finland - Sacha van Albada, Markus Diesmann, Jonas Stapmanns, Han-Jia Jiang - Jülich Research Centre, Jülich, Germany