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Abstract

Summary: To train deep learning-based segmentation models, large ground truth datasets are needed. To address
this need in microfluidic live-cell imaging, we present CellSium, a flexibly configurable cell simulator built to synthe-
size realistic image sequences of bacterial microcolonies growing in monolayers. We illustrate that the simulated
images are suitable for training neural networks. Synthetic time-lapse videos with and without fluorescence, using
programmable cell growth models, and simulation-ready 3D colony geometries for computational fluid dynamics
are also supported.

Availability and implementation: CellSium is free and open source software under the BSD license, implemented in
Python, available at github.com/modsim/cellsium (DOI: 10.5281/zenodo.6193033), along with documentation, usage
examples and Docker images.

Contact: k.noeh@fz-juelich.de

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Deep learning (DL)-based segmentation methods have become the
standard for bioimage analysis, largely surpassing traditional
approaches (Jeckel and Drescher, 2021). A bottleneck in the applica-
tion of DL techniques is the need for comprehensive ground truth
(GT) data for training and validation. For the task of cell segmenta-
tion, for example, pixel-perfect masks discerning individual cells
from the background are crucial. Such data are, however, problem-
specific and laborious to produce (Jeckel and Drescher, 2021).
Synthesizing data along with its GT is a tried and tested way to alle-
viate this bottleneck. Cell simulators have been built to form a better
understanding of biological growth phenomena, by modeling mo-
lecular aspects, rather than aiming at generating photorealistic
images (e.g. Gutiérrez et al., 2017). For eukaryotic cells, data aug-
mentation using (fluorescence) image generators is well established
(e.g. Lehmussola et al., 2007; Svoboda and Ulman, 2017).
However, apart from an example for brightfield yeast image gener-
ation (Kruitbosch et al., 2022), the benefits of synthetic imagine gen-
eration have not been exploited for microbial image analysis, in
particular in the field of phase contrast microscopy.

To serve the needs of training data hungry DL approaches to
analyze phase contrast image stacks, we have developed the highly

configurable bacterial microcolony simulator CellSium. We demon-
strate its applicability for object detection (YOLOv5) as well as se-
mantic segmentation (Mask R-CNN) using synthetic data and verify
the resulting neural networks with real image data. Further usage
scenarios of CellSium beyond image synthetization are also
showcased.

2 Approach

CellSium is an agent-based simulator. Internally, each cell is repre-
sented as a Python object, with individual properties, such as shape
or growth behavior, implemented as mixins following object-
oriented programming paradigms. Cell geometries are modeled
via closed polygonal chains, allowing for arbitrary shapes
(Supplementary Section S.1). Various common ready-to-use unicel-
lular geometries are implemented, such as straight and bent rods,
simple coccoid (circular) and ellipsoid shapes (Supplementary Fig.
S.2). Colony growth behavior is implemented in the grow() func-
tion. Here, phenomenological cell size homeostasis models, such as
‘timer’ or ‘sizer’ can be realized (Supplementary Section S.2)
(Taheri-Araghi et al., 2015). The grow() method is then called for
each simulated time step and cell geometries are used with a physics
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engine to calculate feasible cell placements. Various output routines
exist, such as realistic phase contrast images, time-lapse videos,
TrackMate XML (Tinevez et al., 2017) or simulation-ready input
geometries for computational fluid dynamics (CFD) simulations
(Supplementary Section S.3).

The image generation process is shown in Figure 1A: A ‘perfect’
(noiseless) image is generated (A1–A5), which is deteriorated by
adding different kinds of noise. The typical phase contrast ‘halo’
around the cells is generated by Gaussian blurring of the image (A2–
A4), which is combined to mimic a phase contrast image (A5).
Next, uneven illumination is added (A6), along with additive/multi-
plicative noise (A7, A9), yielding a realistic phase contrast bacterial
cell image (A10). All noise models are flexibly configurable. This
allows, for instance, simulating deteriorated image quality
(Supplementary Section S.4), and makes CellSium readily transfer-
able to other imaging modalities. Optionally, fluorescence can be
generated using a Gaussian point spread function (Supplementary
Section S.5).

3 Methods

CellSium is implemented in the Python programming language,
using NumPy and SciPy libraries (http://github.com/numpy, http://
github.com/scipy/scipy), as well as matplotlib (http://github.com/
matplotlib) and OpenCV (http://github.com/opencv) for image gen-
eration. Physical placement simulation is performed using the off-
the-shelve 2D physics library PyMunk (http://github.com/viblo/
pymunk). Source code, PyPI/Anaconda packages and a Docker
image are available, enabling platform-independent usage. The
documentation includes application programming interface (API)
documentation, as well as usage examples for configuring time-lapse
simulations, 3D cell geometries and parametrizable cell models
(Supplementary Section S.1–S.3).

4 Use case: CellSium as GT generator

To assess the applicability of CellSium as a GT generator, a dataset
was generated using the YOLOOutput and COCOOutput modules
(128 images, 512 � 512, 0.09mm/pixel, 0–512 cells per frame).
Synthesized images are verified to have a similar intensity distribu-
tion compared to real images with the similar cell/background ratio
(Supplementary Section S.6). The synthesized outputs were then
used to train the object detector/segmentation frameworks YOLOv5
(Jocher et al., 2020) and the Mask R-CNN (He et al., 2017) module
of MMDetection (Chen et al., 2019). As test data, a microcolony
image of Corynebacterium glutamicum was used (Fig. 1B), which

was interactively segmented using the Trainable Weka Segmentation
(Arganda-Carreras et al., 2017) and then hand-corrected (Fig. 1C).

The YOLOv5 (You Only Look Once v5, ultralytics/yolov5 v4.0)
net was trained in yolo5l mode for 300 epochs, and the test data
were predicted with an intersection over union threshold for non-
maximum suppression of 0.6 and a confidence threshold of 0.001. A
Mask R-CNN (Region-Convolutional Neural Network) was trained
using the MMDetection framework (open-mmlab/mmdetection
v2.17.0) for 13 epochs, and the test data were predicted with pro-
posal counts raised to accommodate for the cell count (nms_pre/
rpn.max_per_img/rccn.max_per_img 12000/4000/3000 and a score
threshold of 0.5).

The mean average precision (mAP) results are given in Table 1.
The YOLO net yielded a mAP50 of 0.994, while the Mask R-CNN
yielded a mAP50 of 0.987 for both bounding boxes segmentations.
All files to reproduce the evaluation are available in the GitHub re-
pository http://github.com/modsim/cellsium.

5 Conclusion

CellSium is a microcolony simulator primarily aimed at bacterial
image dataset GT generation. Simulated training data showed high-
intensity histogram correlation with real data and were proven use-
ful for state-of-the-art object detector/segmentation frameworks
(YOLOv5, Mask R-CNN), yielding networks capable of producing
competitive results with real time-lapse microscopy images.
Compared to the laborious manual annotation of image sequences,
taking an in silico approach allows generating labeled data with
desired characteristics at any amounts, which benefits training and
method verification. Likewise, CellSium is an effective education
tool that allows users, in a well-defined environment, to train
method usage or to test phenomenological cell growth models and
their impact on the growth characteristics of microcolonies. Finally,
developers of bioimage analysis algorithms can benchmark and
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Fig. 1. (A) Highly configurable image generation flow to produce realistic phase contrast images. (B–E) Prediction results of neural networks trained with data simulated using

CellSium and evaluated with real data. (B) Input image, a Corynebacterium glutamicum microcolony; (C) manually corrected GT; (D) YOLOv5 object detector result; and (E)

Mask R-CNN segmentation network result

Table 1 Mean average precision (mAP) results for trained YOLOv5

and Mask R-CNN networks

Bounding box Segmentation

Network mAP0.5:0.95 mAP0.5 mAP0.5:0.95 mAP0.5

YOLOv5 0.667 0.994 – –

Mask R-CNN 0.465 0.987 0.470 0.987

Tests were performed on an Intel Core i7 4790 (3.6 GHz, 8 threads), 32

GB, GeForce GTX 1080 Ti Linux workstation.
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validate their segmentation and tracking methods with the simulator
in flexibly configurable settings.

CellSium can be easily used as-is, or, due to its pluggable archi-
tecture, serve as a base for implementing other cell types, developing
custom cell behavior within growing microcolonies, or embedding
the image generation, for example directly in a DL training loop for
continuous procedural training data generation. CellSium’s current
image generation capabilities are well-suited for training networks
tailored to one imaging modality. A future step, owing to its highly
flexible noise model, is to implement generative adversarial net-
works to achieve a high level of realism, independent of the
modality.
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