000909155 001__ 909155
000909155 005__ 20240712113128.0
000909155 0247_ $$2doi$$a10.1039/D1TA10215J
000909155 0247_ $$2ISSN$$a2050-7488
000909155 0247_ $$2ISSN$$a2050-7496
000909155 0247_ $$2Handle$$a2128/31686
000909155 0247_ $$2WOS$$aWOS:000787357800001
000909155 037__ $$aFZJ-2022-03034
000909155 082__ $$a530
000909155 1001_ $$0P:(DE-Juel1)156244$$aTsai, Chih−Long$$b0$$eCorresponding author
000909155 245__ $$aInstability of Ga-substituted Li 7 La 3 Zr 2 O 12 toward metallic Li
000909155 260__ $$aLondon [u.a.]$$bRSC$$c2022
000909155 3367_ $$2DRIVER$$aarticle
000909155 3367_ $$2DataCite$$aOutput Types/Journal article
000909155 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661231513_2170
000909155 3367_ $$2BibTeX$$aARTICLE
000909155 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909155 3367_ $$00$$2EndNote$$aJournal Article
000909155 520__ $$aGa-substituted Li7La3Zr2O12 (LLZO) garnet is among the most promising solid electrolytes for next-generation all-solid-state Li battery (SSLB) applications due to its very high Li-ion conductivity. However, the attempts to use Ga-substituted LLZO as a solid electrolyte for SSLBs are not yet successful. Here, the research results show that Li6.4Ga0.2La3Zr2O12 can be reduced by Li at 25 C when the surface of the material is properly cleaned. The experimental results suggest that Ga leached out of the garnet structure to form the Li–Ga alloy, which apparently would short-circuit the battery if Ga-substituted LLZO is used as a solid electrolyte. When low concentration Ga-substitution is applied, e.g. Li6.45Ga0.05La3Zr1.6Ta0.4O12, the material seems stable against Li at ambient temperature but not at high temperatures, where heat treatment is usually used to reduce the interfacial resistance between Li and LLZO. The experimental results are also supported by density functional theory calculations to show that the Ga-substituted LLZO/Li interface tends to transform into LLZO and the Li2Ga intermetallic compound. The results highlight the importance of substitution selection for LLZO, for which the Ga-substituted LLZO solid electrolyte may not be suitable for direct contact with metallic Li
000909155 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000909155 536__ $$0G:(BMBF)13XP0224B$$aLiSi - Lithium-Solid-Electrolyte Interfaces (13XP0224B)$$c13XP0224B$$x1
000909155 536__ $$0G:(BMBF)13XP0223A$$aCatSe - Interfaces and Interphases in Rechargeable Li Based Batteries: Cathode/Solid Electrolyte (13XP0223A)$$c13XP0223A$$x2
000909155 536__ $$0G:(EU-Grant)635643$$aHIPSTER - Deployment of high pressure and temperature food processing for sustainable, safe and nutritious foods with fresh-like quality (635643)$$c635643$$fH2020-SFS-2014-2$$x3
000909155 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909155 7001_ $$00000-0001-6419-3655$$aThuy Tran, Ngoc Thanh$$b1
000909155 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b2
000909155 7001_ $$0P:(DE-Juel1)172733$$aLiu, Zigeng$$b3
000909155 7001_ $$0P:(DE-Juel1)188297$$aWindmüller, Anna$$b4
000909155 7001_ $$0P:(DE-Juel1)194134$$aLin, Che-an$$b5$$ufzj
000909155 7001_ $$0P:(DE-Juel1)177996$$aXu, Qi$$b6
000909155 7001_ $$0P:(DE-Juel1)180280$$aLu, Xin$$b7
000909155 7001_ $$0P:(DE-Juel1)161141$$aYu, Shicheng$$b8
000909155 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b9
000909155 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b10
000909155 7001_ $$0P:(DE-Juel1)191555$$aLin, Shih-kang$$b11$$ufzj
000909155 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b12
000909155 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D1TA10215J$$gVol. 10, no. 20, p. 10998 - 11009$$n20$$p10998 - 11009$$tJournal of materials chemistry / A$$v10$$x2050-7488$$y2022
000909155 8564_ $$uhttps://juser.fz-juelich.de/record/909155/files/d1ta10215j.pdf$$yOpenAccess
000909155 8767_ $$d2022-01-17$$eHybrid-OA$$jPublish and Read$$zRSC
000909155 909CO $$ooai:juser.fz-juelich.de:909155$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire$$qOpenAPC
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b0$$kFZJ
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b2$$kFZJ
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172733$$aForschungszentrum Jülich$$b3$$kFZJ
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188297$$aForschungszentrum Jülich$$b4$$kFZJ
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194134$$aForschungszentrum Jülich$$b5$$kFZJ
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177996$$aForschungszentrum Jülich$$b6$$kFZJ
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180280$$aForschungszentrum Jülich$$b7$$kFZJ
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161141$$aForschungszentrum Jülich$$b8$$kFZJ
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b9$$kFZJ
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b10$$kFZJ
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191555$$aForschungszentrum Jülich$$b11$$kFZJ
000909155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b12$$kFZJ
000909155 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000909155 9141_ $$y2022
000909155 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000909155 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909155 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000909155 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000909155 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-09$$wger
000909155 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2021$$d2022-11-09
000909155 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000909155 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000909155 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000909155 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-09
000909155 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000909155 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000909155 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2021$$d2022-11-09
000909155 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909155 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000909155 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
000909155 920__ $$lyes
000909155 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000909155 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000909155 9801_ $$aFullTexts
000909155 980__ $$ajournal
000909155 980__ $$aVDB
000909155 980__ $$aUNRESTRICTED
000909155 980__ $$aI:(DE-Juel1)IEK-9-20110218
000909155 980__ $$aI:(DE-Juel1)IEK-12-20141217
000909155 980__ $$aAPC
000909155 981__ $$aI:(DE-Juel1)IET-1-20110218
000909155 981__ $$aI:(DE-Juel1)IMD-4-20141217