001     909155
005     20240712113128.0
024 7 _ |a 10.1039/D1TA10215J
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 2128/31686
|2 Handle
024 7 _ |a WOS:000787357800001
|2 WOS
037 _ _ |a FZJ-2022-03034
082 _ _ |a 530
100 1 _ |a Tsai, Chih−Long
|0 P:(DE-Juel1)156244
|b 0
|e Corresponding author
245 _ _ |a Instability of Ga-substituted Li 7 La 3 Zr 2 O 12 toward metallic Li
260 _ _ |a London ˜[u.a.]œ
|c 2022
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661231513_2170
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ga-substituted Li7La3Zr2O12 (LLZO) garnet is among the most promising solid electrolytes for next-generation all-solid-state Li battery (SSLB) applications due to its very high Li-ion conductivity. However, the attempts to use Ga-substituted LLZO as a solid electrolyte for SSLBs are not yet successful. Here, the research results show that Li6.4Ga0.2La3Zr2O12 can be reduced by Li at 25 C when the surface of the material is properly cleaned. The experimental results suggest that Ga leached out of the garnet structure to form the Li–Ga alloy, which apparently would short-circuit the battery if Ga-substituted LLZO is used as a solid electrolyte. When low concentration Ga-substitution is applied, e.g. Li6.45Ga0.05La3Zr1.6Ta0.4O12, the material seems stable against Li at ambient temperature but not at high temperatures, where heat treatment is usually used to reduce the interfacial resistance between Li and LLZO. The experimental results are also supported by density functional theory calculations to show that the Ga-substituted LLZO/Li interface tends to transform into LLZO and the Li2Ga intermetallic compound. The results highlight the importance of substitution selection for LLZO, for which the Ga-substituted LLZO solid electrolyte may not be suitable for direct contact with metallic Li
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a LiSi - Lithium-Solid-Electrolyte Interfaces (13XP0224B)
|0 G:(BMBF)13XP0224B
|c 13XP0224B
|x 1
536 _ _ |a CatSe - Interfaces and Interphases in Rechargeable Li Based Batteries: Cathode/Solid Electrolyte (13XP0223A)
|0 G:(BMBF)13XP0223A
|c 13XP0223A
|x 2
536 _ _ |a HIPSTER - Deployment of high pressure and temperature food processing for sustainable, safe and nutritious foods with fresh-like quality (635643)
|0 G:(EU-Grant)635643
|c 635643
|f H2020-SFS-2014-2
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Thuy Tran, Ngoc Thanh
|0 0000-0001-6419-3655
|b 1
700 1 _ |a Schierholz, Roland
|0 P:(DE-Juel1)161348
|b 2
700 1 _ |a Liu, Zigeng
|0 P:(DE-Juel1)172733
|b 3
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)188297
|b 4
700 1 _ |a Lin, Che-an
|0 P:(DE-Juel1)194134
|b 5
|u fzj
700 1 _ |a Xu, Qi
|0 P:(DE-Juel1)177996
|b 6
700 1 _ |a Lu, Xin
|0 P:(DE-Juel1)180280
|b 7
700 1 _ |a Yu, Shicheng
|0 P:(DE-Juel1)161141
|b 8
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 9
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 10
700 1 _ |a Lin, Shih-kang
|0 P:(DE-Juel1)191555
|b 11
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 12
773 _ _ |a 10.1039/D1TA10215J
|g Vol. 10, no. 20, p. 10998 - 11009
|0 PERI:(DE-600)2702232-8
|n 20
|p 10998 - 11009
|t Journal of materials chemistry / A
|v 10
|y 2022
|x 2050-7488
856 4 _ |u https://juser.fz-juelich.de/record/909155/files/d1ta10215j.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909155
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
|q OpenAPC
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161348
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172733
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)188297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)194134
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)177996
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)180280
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)161141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)191555
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2021
|d 2022-11-09
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a TIB: Royal Society of Chemistry 2021
|2 APC
|0 PC:(DE-HGF)0110
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21