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Most lncRNAs display species-specific expression patterns suggesting that animal models of

cancer may only incompletely recapitulate the regulatory crosstalk between lncRNAs and

oncogenic pathways in humans. Among these pathways, Sonic Hedgehog (SHH) signaling is

aberrantly activated in several human cancer entities. We unravel that aberrant expression of

the primate-specific lncRNA HedgeHog Interacting Protein-AntiSense 1 (HHIP-AS1) is a hallmark

of SHH-driven tumors including medulloblastoma and atypical teratoid/rhabdoid tumors. HHIP-

AS1 is actively transcribed from a bidirectional promoter shared with SHH regulator HHIP.

Knockdown of HHIP-AS1 induces mitotic spindle deregulation impairing tumorigenicity in vitro

and in vivo. Mechanistically, HHIP-AS1 binds directly to the mRNA of cytoplasmic dynein

1 intermediate chain 2 (DYNC1I2) and attenuates its degradation by hsa-miR-425-5p. We

uncover that neither HHIP-AS1 nor the corresponding regulatory element in DYNC1I2 are

evolutionary conserved in mice. Taken together, we discover an lncRNA-mediated mechanism

that enables the pro-mitotic effects of SHH pathway activation in human tumors.
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Sonic hedgehog (SHH) signaling plays a pivotal role in
promoting oncogenesis, tumor growth and progression1. It
is aberrantly activated in various common cancers in adults,

including basal cell carcinoma (BCC)2, but also in pediatric
neoplasms, including rhabdomyosarcoma3 and brain tumors
such as medulloblastoma (MB) and atypical teratoid/rhabdoid
tumors (ATRT)4–8. Pediatric brain tumors, like MB and ATRT,
are the most common solid malignancies of childhood and the
leading cause of cancer-related death in children9. Both entities
are highly heterogeneous and can be segregated into distinct
subgroups by virtue of their divergent molecular characteristics.
Notably, such classification, which is primarily based on inter-
group differences detected at multi-omics level, is of clinical
utility, as it correlates with specific and distinct clinico-
pathological and prognostic patterns10–12. Specifically, MB com-
prises four main subgroups, designated as Wingless (WNT),
SHH, Group 3 and Group 413–16. WNT and SHHMBs are named
according to the signaling pathways that drive their formation
and progression17,18. Conversely, the other two MB subgroups
are less defined in their molecular etiology19,20, although Group 3
MB recurrently displays MYC amplification and/or
overexpression21–24, while Group 4 MB commonly show activa-
tion of receptor tyrosine kinase signaling through aberrant
expression of ERBB4 and the phosphorylated form of the
tyrosine–protein kinase SRC25. In the case of ATRT, three sub-
groups have been defined, namely tyrosinase (TYR), MYC and
SHH, according to the distinctive overexpression of TYR or MYC
genes, or the activation of SHH signaling4,6,26.

Targeting the SHH signaling to extinguish its mitogenic effects
in SHH MB has shown efficacy in pre-clinical animal models and
in humans27. However, the clinical use of SHH inhibitors, such as
the G protein-coupled receptor smoothened (SMO) antagonist
Vismodegib (GDC-0449), is limited due to toxicity or emergence
of drug resistance in children with SHH MB to date28,29. While
mutation and altered expression of several protein-coding genes
are well-established drivers of SHH-dependent tumorigenesis, the
precise impact of the non-protein coding genome remains largely
unexplored. In particular, investigations of the specific role of
long non-coding RNAs (lncRNAs) in SHH-driven malignancies
are just emerging as an important research field30,31. Most
research efforts have so far focused on well-defined and com-
prehensive murine models of SHH-driven tumors32,33. However,
these models fail to offer a faithful representation of the human
lncRNAs landscape, because lncRNAs show only poor con-
servation across species34. Nevertheless, lncRNAs are known to
play essential roles in all aspects of cell biology35–37 and the
regulatory mechanisms orchestrated by lncRNAs are diverse
including direct binding to chromatin38, proteins39 or regulating
microRNAs40. Conversely, the role of non-coding RNAs in the
pathogenesis and disease stratification of ATRT has not been
elucidated so far, and non-coding RNA classes also remain poorly
characterized in MB.

Here, we explore the role of lncRNAs specifically in SHH-driven
tumors with the aim to decipher the impact in SHH signaling reg-
ulation and function in these tumors. We show that aberrant
expression of the lncRNA Hedgehog Interacting Protein Antisense 1
(HHIP-AS1) is a hallmark of human SHH-driven tumors including
MB and ATRT. HHIP-AS1 is actively transcribed from a SHH-
responsive bidirectional promoter shared with the SHH signaling
intermediate HHIP. HHIP-AS1 knockdown leads to reduced tumor
growth in SHH-driven tumors in vitro and in vivo by decreasing cell
proliferation and inducing mitotic spindle deregulation. Mechan-
istically, we show that HHIP-AS1 binds to and stabilizes the mRNA
of cytoplasmic dynein 1 intermediate chain 2 (DYNC1I2), a com-
ponent of the cytoplasmic dynein 1 complex, by preventing hsa-
miR-425-5p-mediated degradation. We uncover that neither HHIP-

AS1 nor the corresponding regulatory element in DYNC1I2 are
evolutionary conserved in mice demonstrating the power of cross-
entity transcriptome-wide comparisons to identify regulatory
lncRNA circuitries in human cancer. In all, we discover a lncRNA-
dependent blockage of endogenous RNA mechanism as an addi-
tional layer of epigenetic regulation mediated by HHIP-AS1 as a
human-specific target gene in SHH-dependent cell progression.

Results
Overexpression of the long non-coding RNA HHIP-AS1 is a
hallmark of human SHH-driven tumors. To discover global
SHH-dependent gene expression patterns in cancer, we first
determined differentially expressed transcripts in RNA sequen-
cing data by comparing SHH MB (n= 58) to non SHH MB
subgroup samples (n= 164) (Platform, R241). Our approach
confirmed several known protein-coding SHH mediators
including GLI1, GLI2, HHIP and Atonal BHLH Transcription
Factor 1, and revealed lncRNAs deregulated in SHH MB (Fig. 1a,
Supplementary Data file 1). Among these candidates, we identi-
fied HHIP-AS1 as the most specifically overexpressed lncRNA in
SHH MB (Fig. 1a, Supplementary Data file 1) without protein-
coding potential (Fig. S1a). We next investigated whether HHIP-
AS1 was similarly overexpressed in other tumor entities with
aberrant activation of the SHH signaling. Comparative expression
analysis confirmed specific HHIP-AS1 overexpression in SHH-
driven entities including ATRT (Fig. 1b), cutaneous BCC
(Fig. S1b) and rhabdomyosarcoma (Fig. S1c) compared to normal
and cancerous control tissues. Consistent with its overexpression,
we next revealed active transcription of HHIP-AS1 from a
hypomethylated promoter shared with HHIP, a well-established
regulator of the SHH pathway and whose genomic localization
shows a head-to-head orientation with the HHIP-AS1 locus,
exclusively in SHH MB using both H3K27ac ChIP-sequencing
(Fig. 1c) and high-resolution DNA methylation data (Fig. 1d and
S1d). Transcriptome-wide correlation analyses consistently
revealed that HHIP and HHIP-AS1 are co-expressed in MB
(n= 167, r= 0.990, p < 0.001, Fig. S1e) and in ATRT (n= 49,
r= 0.836, p < 0.001, Fig. S1f) cohorts. Furthermore, we could
reveal that the two genes exhibited remarkably high and sig-
nificant correlative co-expression scores in multiple expression
datasets, including other cancer entities and control tissues
(n= 39,090; p < 0.001, Fig. 1e). These observations prompted us
to hypothesize that HHIP-AS1 and HHIP may indeed share a
unique bidirectional promoter. Therefore, we performed a luci-
ferase reporter assay and revealed the existence of forward and
reverse activity of the promoter region in vitro (Fig. 1f),
suggesting that promoter hypomethylation may equally drive
overexpression of both HHIP-AS1 and HHIP transcripts in SHH-
driven tumors.

Since HHIP-AS1 was not previously described in murine models
of SHH-driven tumors and lncRNAs are only partially conserved
through species34, we investigated to which extent HHIP-AS1 was
conserved across vertebrates. Remarkably, genome-scale compar-
isons revealed that HHIP-AS1 was only conserved in primates and
not in rodents (Fig. 1g and S1g), explaining why this lncRNA has
not been identified in animal models so far.

HHIP-AS1 is functionally required in human SHH-driven
brain tumors. Since HHIP-AS1 overexpression is a hallmark in
SHH-driven tumors, we investigated whether HHIP-AS1 expres-
sion was dependent on SHH signaling in tumor cells. Pharmaco-
logical activation of SMO receptor using SAG (SMO agonist)
increased HHIP-AS1 expression in two independent tumor cell
lines, Daoy and CHLA-266, and one primary cell culture, HHU-
ATRT1 (Fig. 2a) as well as in non-tumor cells with SHH activation,
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Fig. 1 The long non-coding RNA HHIP-AS1 is a hallmark of human SHH-driven tumors. a Long non-coding RNA (lncRNA) expression profiles in SHH-
driven medulloblastoma (MB; right side) versus non SHH-driven MB (left side). The volcano plot illustrates the distribution of statistical significance (y-
axis) and relative expression level (x-axis) for the lncRNAs profile. The red dot indicates HHIP-AS1 (HedgeHog Interacting Protein-Anti-Sense 1). Statistical
analysis was performed using one-way ANOVA with post-hoc Tukey HSD; ***p < 0.001. b Violin plots display the expression level of HHIP-AS1 according to
an integrative transcriptomic analysis of 3492 samples from neoplastic brain tissues with SHH activation (SHH MB and atypical teratoid/rhabdoid tumors
(ATRT)) or without commonly reported SHH activation (brain tumors) and normal brain without tumor. Statistical analysis was performed using
Kruskal–Wallis Test with Dunn’s Multiple Comparison Test; ***p < 0.001. Red dots= SHH-driven entities; black dots= non SHH-driven tumors and control
tissue. c H3K27ac ChIP-sequencing profile on HHIP-AS1 and HHIP loci in the four MB subgroups64. Bar graph indicates the expression level of HHIP-AS1 in
the corresponding MB subgroups. Error bars represent ± SEM. d Scatter plot representing the degree of DNA methylation (B value) of the potential
promoter region in relation to HHIP-AS1 expression levels in SHH MB (red dots) and other MB subgroups (black dots). Statistics were done by Pearson
correlation. e Scatter plot displaying expression correlation of HHIP and HHIP-AS1 across datasets (n= 351). Mean expressions of both transcripts from
39,090 samples were analyzed in their respective datasets and plotted with error bars representing the SEM for both genes. Statistics were done by
Pearson correlation. f The bar graph indicates the relative luciferase activity of empty luciferase vector (pLUC) or pLUC containing the cloned HHIP
promoter sequence orientation (fw = forward, rv = reversed). The results are presented as the mean ± SD of three independent experiments. Student´s
two-sided t-test; **p < 0.01, ***p < 0.001. g Identification of evolutionarily conserved regions corresponding to critical regulatory elements in large (>1Mb),
highly conserved gene desert regions flanking the human HHIP-AS1 gene located at chromosome 4q31.21 with two exons. Source data and exact p-values
are provided as a “Source Data file”.
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Fig. 2 The long non-coding RNA HHIP-AS1 is functionally required in human SHH-driven brain tumors. a The relative gene expression levels of HHIP-AS1
and the SHH target gene GLI1 were tested in tumor cell lines (Daoy and CHLA-266) and in primary tumor cell cultures (HHU-ATRT1) upon
pharmacological activation (SAG, Smoothened agonist) or inhibition (CYC, cyclopamine) of the SHH pathway. b Relative gene expression levels of
indicated genes as measured by qRT-PCR upon transient knockdown of GLI1 and GLI2 in the depicted cell models normalized to control (si-negative-POOL;
gene expression of target genes were normalized to housekeeping genes: HPRT, GUSB and PPIA). c Proliferation rate of Daoy, CHLA-266 and HHU-ATRT1
was measured by EdU incorporation upon transient (si-HHIP-AS1) or stable HHIP-AS1 knockdown normalized to control. d Self-renewal capacity of Daoy,
CHLA-266 and HHU-ATRT1 was measured by colony formation assay upon transient (si-HHIP-AS1) or stable (sh-HHIP-AS1#1 and sh-HHIP-AS1#2) HHIP-
AS1 knockdown normalized to control. In panel c+ d corresponding controls (either with si-negative-POOL or sh-scr transfected Daoy, CHLA-266 and
HHU-ATRT1 cells) were set to 100% and levels of knockdowns were calculated accordingly. e Proliferation rate of primary SHH MB cultures derived from
freshly resected tumors (n= 2 patients) measured by EdU incorporation upon transient knockdown of HHIP-AS1 (si-HHIP-AS1) normalized to control (si-
negative-POOL). f Cell viability of these primary SHH MB cultures derived from freshly resected tumors (n= 2 patients) measured by CellTiter-Glo upon
transient knockdown of HHIP-AS1 (si-HHIP-AS1) normalized to control (si-negative-POOL). g Proliferation rate of SHH MB PDX cells (ICN-MB12)
determined by BrdU incorporation and Ki67 immunostaining after transient knockdown of HHIP-AS1 (sh-HHIP-AS1#1) normalized to control. Bar graphs of
panels a+ b are presented as the mean ± SD, panels c–g are presented as the mean ± SEM of at least three independent experiments and corresponding
controls were set to 100%. Student’s two-sided t-test; ***p < 0.001; **p < 0.01; *p < 0.05. Source data and exact p-values are provided as a “Source
Data file”.
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namely neuronal stem cells (NSC; Fig. S3a). Conversely, inhibition
of SMO using cyclopamine (SMO antagonist) significantly reduced
HHIP-AS1 in all these cell models (Fig. 2a and S3a). Activation and
inhibition of the SHH pathway were confirmed by quantification
of GLI expression level through qRT-PCR (Fig. 2a and S3a) and
immunoblotting (Fig. S2a–c). GLI proteins are known to function
as regulators of the SHH transcriptional response, hence we next
examined whether GLI could affect HHIP-AS1 expression. Tran-
sient knockdown of GLI1 and GLI2 reduced HHIP-AS1 and HHIP
expression in all of the above-mentioned SHH-cancer cell models
(Fig. 2b and S2), while on the other hand overexpression of GLI1
(Fig. S2d) resulted in increased expression of HHIP and HHIP-AS1
(Fig. S3b), confirming HHIP-AS1 as a target gene of SHH signal-
ing. To evaluate the functional impact of HHIP-AS1, we silenced
its expression in vitro using either siRNAs or shRNAs directed
against this lncRNA. Strikingly, knockdown of HHIP-AS1
(Fig. S3c) resulted in reduced proliferation, monitored by EdU
incorporation (Fig. 2c), as well as reduced clonogenicity (Fig. 2d) of
Daoy, CHLA-266 and HHU-ATRT1. In addition, cell viability,
assessed through metabolic assay (CellTiter-Glo), was diminished
in the SHH MB cell line Daoy and in ATRT cell line CHLA-266
upon HHIP-AS1 silencing (Fig. S3d). We could verify these phe-
notypic changes after transient HHIP-AS1 knockdown in addi-
tional SHH-driven cell models, namely CHLA-04 (ATRT), RH30
(rhabdomyosarcoma), NSC and UI226 (BCC, Fig. S3e). Impor-
tantly, we also confirmed that HHIP-AS1 depletion reduced pro-
liferation and viability in primary cultures from two SHH MB
patients (Fig. 2e and f) and impaired proliferation of cultured cells
of ICN-MB12 (SHH MB patient derived xenograft model; Fig. 2g).
Notably, overexpression of HHIP-AS1 rescued the reduced pro-
liferation and viability (Fig. S3f), highlighting that HHIP-AS1 is not
only aberrantly overexpressed in SHH-driven tumors, but also
functionally relevant in these malignancies. Conversely, transfec-
tion of HHIP-AS1 siRNAs into non SHH MB cells (HD-MB03 and
CHLA-01) with low expression of HHIP-AS1 (Fig. S3g) did not
result in reduced proliferation and viability (Fig. S3h), ruling out
potential off-target effects and confirming that the functional
relevance of HHIP-AS1 is restricted to SHH-driven tumors.
Remarkably, HHIP expression was not affected on mRNA or
protein levels upon stable HHIP-AS1 depletion (Fig. S4a–c).
Therefore, we rule out a cis-regulatory effect of HHIP-AS1 on
HHIP in our MB and ATRT models.

Identification and functional validation of HHIP-AS1 down-
stream targets reveals that HHIP-AS1 binds to the mRNA of
DYNC1I2. In order to decipher the molecular mechanism con-
trolled by HHIP-AS1, we investigated the impact of HHIP-AS1
knockdown on both transcriptome and proteome in two inde-
pendent cell models (Daoy and CHLA-266). Interestingly, our
integrative proteogenomic analysis identified two candidates that
were highly and consistently perturbed upon HHIP-AS1 knock-
down in both models, namely hydroxysteroid 17-beta dehy-
drogenase 10 (HSD17B10) and DYNC1I2 (Fig. 3a, RNA
sequencing data: NCBI GenBank #GSE140741 and proteomic
data: ProteomeXchange PRIDE database #PXD016550). We
decided to focus on DYNC1I2 based on its co-expression with
HHIP-AS1 in primary MB samples (r= 0.336; p < 0.001, Fig. 3b),
as well as its high expression level specifically in SHH MB sub-
group (Fig. S5a) and its known functions in neurodevelopment
and cell cycle progression42. HSD17B10 did not show a significant
correlation with HHIP-AS1 in primary MB samples (Fig. S5b).
We validated by qRT-PCR and immunoblots that HHIP-AS1
depletion reduced the mRNA and protein expression of
DYNC1I2 in Daoy, CHLA-266 and HHU-ATRT1 cells (Fig. S5c
and d). To determine the underlying molecular mechanism, we

investigated a potential interaction between HHIP-AS1 and
DYNC1I2 mRNA. First, we uncovered that both RNAs are co-
localized in cells using RNA fluorescence in situ hybridization
(Fig. 3c and S5e) and this co-localization can be enhanced or
disrupted via SHH activation or inhibition, respectively (Fig. S5f).
Second, we confirmed a direct interaction in each of our three cell
models using an RNA-RNA-centric-pulldown probe set directed
against HHIP-AS1 RNA, which led to a specific enrichment for
DYNC1I2 mRNA compared to negative controls (Fig. 3d).
Finally, we computationally derived the sequence of HHIP-AS1
that is predicted to pair with DYNC1I2 mRNA (Supplementary
Table S1), identifying a 24 nucleotides long region (named HHIP-
AS1bind) able to bind the 5'UTR of DYNC1I2. Furthermore, using
bio-layer interferometry, we found that HHIP-AS1bind could
physically interact with DYNC1I2 mRNA (Fig. 3e). In contrast, a
negative control sequence of HHIP-AS1 (named HHIP-AS1neg),
carrying the same GC content and number of nucleotides as
HHIP-AS1bind, but devoid of any in silico pairing potential to
DYNC1I2 mRNA, did not show any binding activity (Fig. S5g).
Strikingly, we found that in vitro transfection of Daoy or HHU-
ATRT1 with HHIP-AS1bind resulted in extended half-life of
DYNC1I2 mRNA (Fig. 3f and S5h), compared to a control con-
dition where HHIP-AS1neg was used. All these findings confirm
the existence of a functional and direct physical interaction
between these two RNAs in vivo and in vitro, which ultimately
regulates DYNC1I2 expression levels. In order to elucidate whe-
ther the functional interaction between HHIP-AS1 and DYNC1I2
mediates the pro-proliferating phenotype controlled by HHIP-
AS1, we evaluated the functional impact of DYNC1I2 depletion in
our cell models. Interestingly, transient DYNC1I2 knockdown
resulted in reduced proliferation and viability to a similar degree
as observed upon HHIP-AS1 depletion (Fig. S6a and b). More
importantly, when we overexpressed DYNC1I2 using CRISPR-
Cas9-based activation in HHIP-AS1-transiently depleted cells,
both proliferation and viability were restored (Fig. 3g and h),
indicating that HHIP-AS1 exerts its pro-proliferative effects by
controlling DYNC1I2 abundance in tumor cells.

The interaction between HHIP-AS1 and DYNC1I2 promotes
mitosis. Cytoplasmic dynein-complex 1 has been implicated in
various phenotypes including cargo transport on cytoplasmic
microtubules and it was recently reported that DYNC1I2 loss
disrupts mitotic spindle organization in zebrafish neural pro-
genitor cells42. Thus, we hypothesized that HHIP-AS1 loss may
cause a similar effect in human tumor cells by reducing DYNC1I2
availability. Indeed, we found that transient knockdown of HHIP-
AS1 or DYNC1I2 via siRNAs transfection significantly and con-
sistently altered mitotic spindle organization in cells compared to
siRNA control-transfected cells (Fig. 4a and b; Fig. S6c and d),
leading to more DNA damage in the mitotic cells as well
(Fig. S6e). Moreover, using two different shRNAs against HHIP-
AS1, we could confirm the alteration in mitotic spindle organi-
zation in Daoy and CHLA-266 (Fig. 4c and d) upon stable HHIP-
AS1 depletion. More importantly, induced overexpression of
DYNC1I2 as well as of HHIP-AS1 with CRISPR-Cas9-based
activation, rescued the mitotic spindle organization (Fig. 4e and f)
in the context of transient HHIP-AS1 knockdown, supporting
that HHIP-AS1 promotes proliferation through mitotic spindle
stabilization by controlling DYNC1I2 abundance.

HHIP-AS1 blocks endogenous hsa-miR-425-5p function to
maintain DYNC1I2 level. To further mechanistically elucidate
how HHIP-AS1 stabilizes DYNC1I2 mRNA, we evaluated the
genetic sequence of RNA-RNA interaction. Our analysis revealed
six potential miRNA binding sites (Supplementary Table S2)
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Fig. 3 Identification and functional validation of HHIP-AS1 downstream targets reveals that HHIP-AS1 binds to mRNA of DYNC1I2. a Scatter plot
indicates the correlation analysis of RNA sequencing (x-axis) and protein mass spectrometry (y-axis) data in two different cell models (Daoy and CHLA-
266) upon HHIP-AS1 knockdown (using sh-HHIP-AS1#1 and sh-HHIP-AS1#2) versus control cells (sh-scr, n= 3 independent samples per condition and cell
model). b Scatter plot displaying expression correlation of DYNC1I2 and HHIP-AS1 sequencing data comparing FPKM expression values in 167 MB patient
samples. Samples are color coded for MB subgroups. Statistics were done by Pearson correlation. c Representative image of co-localization of HHIP-AS1
and DYNC1I2 mRNA in Daoy obtained through two-color fluorescence in situ hybridization (FISH). White frame indicates the location of the zoom out
picture at the right side. Green: HHIP-AS1 lncRNA, red: DYNC1I2 mRNA, blue: DAPI, Nucleus. Scale bar: 5 µm. This experiment was repeated twice with
similar results. d Enrichment of DYNC1I2 mRNA upon HHIP-AS1 raPOOL pulldown in Daoy and CHLA-266 cell lines and HHU-ATRT1 primary cells. Bar
graphs are presented as the mean ± SD of three independent experiments. e Bio-Layer interferometry was used for detecting direct interaction between
DYNC1I2mRNA and HHIP-AS1. f DYNC1I2mRNA stability upon transfection of a control (HHIP-AS1neg) or the HHIP-AS1 interacting sequence (HHIP-AS1bind).
Calculation was done in comparison to the mRNA level at time point “0 h” in each condition. Data are presented as the mean ± SEM of five independent
experiments; Student´s two-sided t-test; *p < 0.05. g Bar graph indicating the proliferation rate or viability of Daoy cells in control condition (Ctrl), upon
overexpression of DYNC1I2 (DYNC1I2 OE) and upon transient HHIP-AS1-knockdown (si-HHIP-AS1) in DYNC1I2 overexpression (DYNC1I2 OE+ si-HHIP-
AS1). Data are represented as the mean ± SD of at least six independent experiments normalized to the control condition. Student’s two-sided t-test;
***p < 0.001; n.s. not significant. h The immunoblot shows a representative blot of DYNC1I2 protein expression in control (Ctrl) or DYNC1I2-
overexpressing (DYNC1I2 OE) cells. ACTB immunoblotting was used as loading control. This experiment was done twice with similar result. Source data
and exact p-values are provided as a “Source Data file”.
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within the predicted interaction region between HHIP-AS1 and
DYNC1I2 mRNA (Fig. 5a), suggesting that HHIP-AS1 binding to
DYNC1I2 mRNA may interfere with miRNA-dependent regula-
tion of DYNC1I2 expression. Therefore, we correlated the
expression of these miRNA candidates with DYNC1I2 using RNA
sequencing data of 167 primary MB samples. Out of these six
miRNAs, four were not detected in MB patient samples, while
two miRNAs showed expression in MB patient samples, namely
hsa-miR-425-5p (see binding site in Fig. 5a) and hsa-miR-1915.
Notably, hsa-miR-425-5p expression level showed no differences
across molecular subgroups of MB patients and cell models
(Fig. S7a and b), but demonstrated anti-correlation with
DYNC1I2 expression in patient samples (r=−0.312; p < 0.001,

Fig. S7c) compared to hsa-miR-1915 (Fig. S7d). After dividing the
dataset into SHH and non SHH MB, the anti-correlation was only
maintained in non SHH MB samples (r=−0.303; p < 0.001,
Fig. S7e). We therefore tested whether a functional relationship
existed between hsa-miR-425-5p and DYNC1I2. First, we cloned
the 5´UTR of DYNC1I2 in front of a luciferase reporter and
found that hsa-miR-425-5p functionally binds this sequence
causing a reduction of luciferase expression (Fig. 5b), hence
confirming our previous in silico prediction (Fig. 5a). Impor-
tantly, this effect was abrogated upon mutation of the miRNA
binding sequence on DYNC1I2 5´UTR (Fig. 5b). Second, we
demonstrated that hsa-miR-425-5p inhibition significantly
increased DYNC1I2 mRNA levels upon stable HHIP-AS1
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knockdown in three SHH-driven cell models, while transfection
of a negative control miRNA inhibitor did not restore DYNC1I2
expression (Fig. 5c). This effect could be also observed after
in vitro transfection of stable sh-HHIP-AS1 Daoy with only
HHIP-AS1bind sequence resulting in higher expression of
DYNC1I2 mRNA independent of hsa-miR-425-5p inhibition
(Fig. S8a), compared to a control condition where HHIP-AS1neg

was used. Interestingly, the corresponding regulatory element of

DYNC1I2, where hsa-miRNA-425-5p is binding, is not evolu-
tionary conserved in mice (Fig. S9). Third, inhibition of hsa-miR-
425-5p rescued the decreased proliferation phenotype in Daoy
and CHLA-266 obtained with HHIP-AS1 knockdown (Fig. 5d).
Finally, blockage of hsa-miR-425-3p showed no effect on
DYNC1I2 expression level (Fig. S8b–d).

Thus, our data unravel a regulatory network requiring HHIP-AS1
to bind to DYNC1I2 mRNA, to prevent DYNC1I2 depletion
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mediated by binding of hsa-miRNA-425-5p to its 5'UTR. Together,
our correlative data analysis approach in primary MB samples
combined with in silico predictions and mechanistic validation,
uniformly point to a previously poorly explored regulatory function
of lncRNAs which consists in binding to a specific mRNA and
thereby blocking endogenous miRNA binding sites.

Loss of HHIP-AS1 extends survival in SHH-driven brain
tumors in vivo. We next evaluated whether targeting HHIP-AS1
affected tumor growth in vivo. To this end, we initially utilized
two well-established orthotopic brain tumor models with aber-
rant SHH signaling activation. Remarkably, stable knockdown of
HHIP-AS1 in both orthotopically engrafted Daoy and CHLA-266
cells significantly extended the survival of recipient mice com-
pared to corresponding isogenic controls (Daoy, p= 0.0045;
CHLA-266, p= 0.0011; Fig. 6a and b). Repeated luminescence
measurement indicated that the loss of HHIP-AS1 affected tumor
formation in vivo consistently (Fig. S10a–c). We next aimed at
validating our finding using a well-characterized patient-derived
xenograft model of SHH MB. We transduced cells from the SHH-
Med-1712-FH PDX model in vitro with sh-HHIP-AS1 or control
shRNA prior to transplantation into the cerebella of recipient
mice. Knockdown of HHIP-AS1 and corresponding DYCN1I2
reduction was confirmed in this model via qRT-PCR (Fig. S10d).
Interestingly, silencing of HHIP-AS1 in injected PDX cells
delayed the appearance of signs of morbidity in animals, whose
mean survival was significantly extended compared to control
mice (p= 0.0011; Fig. 6c). Lastly, HHIP-AS1 depletion markedly
reduced cell proliferation index in Med-1712-FH PDX tumors
compared to control tumors, when these samples were tested for
Ki67-immunoreactivity (Fig. 6d). Accordingly, we observed more
differentiated cells in tumor tissue compared to control
(Fig. S11a). In line with our in vitro data, we detected no change
in caspase activity (cleaved caspase) in Med-1712-FH PDX
tumors (Fig. S10e and S11b). However, we observed more DNA
damage in tumor tissue compared to control (Fig. 6e) and in NSC
(Fig. S9f) after HHIP-AS1 depletion. Overall, these results provide
compelling evidence that HHIP-AS1 promotes tumorigenicity of
SHH-driven human tumors in vivo.

Discussion
Until now the complexity of the human SHH signaling pathway
and regulatory feedback loops is not fully understood. Specifically,
the precise knowledge of the molecular mechanisms underlying
SHH pathway pro-oncogenic activity in human cells is urgently
required. To this aim, the widespread use of genetic animal
models of SHH-driven malignancies has been successful at
identifying and describing a large number of protein-coding
genes and protein post-translational modifications implicated in
regulation and downstream functions of SHH signaling in
tumors43–46. Nevertheless, despite accounting for ~70% of the
transcribed genome in humans47, mechanistic insights into the
role of lncRNAs in SHH-driven cancer biology have been gained
only for a very few species. A reason for this poor consideration
relies on the general low level of inter-species conservation of
lncRNAs, which has inevitably hindered their discovery and
functional characterization in the commonly used genetic rodent
models. In our study, we employed a large comparative tran-
scriptome analysis approach across several thousands of human
normal and cancerous tissues, and identified HHIP-AS1 as a
lncRNA that is specifically upregulated in SHH-driven tumors
and functionally required for mediating the pro-proliferative
effects of oncogenic SHH signaling. Interestingly, we found that
HHIP-AS1 constitutes a downstream transcriptional target of
SHH signaling, providing an explanation to its restricted and

elevated expression in SHH-driven entities. Specifically, we
uncovered that HHIP-AS1 transcription is initiated from a
bidirectional promoter shared with the known SHH-pathway
regulator HHIP. However, unlike HHIP or other key protein-
coding gene of the SHH pathway, HHIP-AS1 is poorly conserved
across vertebrates, showing high sequence similarity between
humans and other primates, but substantially no conservation
between humans and rodents. Therefore, our findings pinpoint
the importance of species-specific evaluation of oncogenic sig-
naling pathways, and emphasize how some key regulatory net-
works or pro-oncogenic programs may not be faithfully
recapitulated by rodent tumor models, despite their generally
well-accepted value to study human pathogenic processes. Fur-
thermore, by using a combined proteomic and RNA sequencing
approach, we uncovered that HHIP-AS1 acts in trans by reg-
ulating the expression of DYNC1I2, which encodes for an inter-
mediate chain of the cytoplasmic dynein-complex 1, and not in
cis by regulating HHIP48. We, among others, could already
demonstrate the power of integrated proteogenomic approaches,
showing that proteomic combined with transcriptomic profiles
provides a profound insight into active oncogenic gene expression
regulation in pediatric brain tumors and other cancers16,25. The
involvement of the cytoplasmic dynein-complex 1 provides an
intriguing aspect of SHH pathway regulation and function.
Indeed, dynein motor complexes have been long implicated in the
activity of SHH signaling. However, this association was only
restricted to cytoplasmic dynein-complex 2, due to its require-
ment at the level of primary cilia in mediating ciliary retrograde
transport49. By characterizing the functional interaction between
HHIP-AS1 and DYNC1I2 in cancer cells and in NSC, we unra-
veled the existence of an additonal layer whereby SHH signaling
sustains cell growth and progression. SHH signaling is already
known to directly promote cell cycle progression by primarily
activating the expression of MYCN and Cyclin D genes, which
drive cells toward the G1/S transition50. By sustaining the tran-
scription of HHIP-AS1, the SHH signaling guarantees effective
spindle assembly and chromosome segregation through main-
tenance of appropriate levels of DYNC1I2. Interestingly, we could
observe in cells with HHIP-AS1 depletion that the dysregulation
of mitosis led to more DNA damage in mitotic cells. Although the
DNA damage response and the mitotic cell division pathways
were thought to be distinct and unrelated, it was shown in several
studies that mitotic cells can experience DNA damage either
endogenously due to unrepaired premitotic damage or exogen-
ously from cancer therapies amongst other causes51–53. As we
demonstrate that SHH exerts a control on cell division during the
time of mitosis in cancer cells and in NSC, therapeutic limitations
may exist. Targeting the SHH signaling pathway seems to provide
a highly innovative therapeutic option for a broad variety of
cancers. Nevertheless, as SHH pathway inhibitors seem to be safe
in adults, this still remains to be shown in children treated for MB
and taking into consideration our findings in NSCs. While the
introduction of targeted therapies represents an exciting era in
personalized medicine, compounds that target developmental
signaling pathways (including SHH signaling) should be carefully
evaluated for specific toxicities and their potential benefits.

Depleting cells of HHIP-AS1 or blocking its interaction with
DYNC1I2 mRNA exposes the latter to hsa-miRNA-425-5p-
mediated degradation, thereby compromising mitotic fidelity and
consequently blocking cell progression in vitro and in vivo. As the
power of miRNA in regulation of mRNA has been explored
elaborately, we are beginning to recognize also the complex
interactions of miRNAs and lncRNAs and ensuing RNA reg-
ulatory networks. Our work provides a previously unmatched
molecular understanding of lncRNA function by actively com-
peting with a miRNA binding site on a target mRNA. We show
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that the lncRNA HHIP-AS1 constitutes a so far unexplored target
gene of SHH signaling, which enables the pro-mitotic effects of
this pathway by blocking hsa-miR-425-5p-dependent inhibition
of DYNC1I2 expression. This mechanism is of fundamental
interest as it describes not only a major mediator of cell pro-
gression triggered by SHH activation but also as provides a pre-
viously unknown epigenetic regulation of SHH pathway in
humans. However, to comprehensively understand the role of the
regulatory HHIP-AS1/DYNC1I2/miR425 axis and its potent pro-
mitotic effects, further experiments are required to elucidate the
relevance in SHH-driven neurogenesis and tumorigenesis.

Methods
Animal models. For the orthotopic brain tumor models we used 8 week old female
NMRI-Foxn1nu/nu that were purchased from Janvier Labs, Le Genest-Saint-Isle,
France. We followed both European and national regulations for animal housing,
care and experimentation (Directive 86/609). The use of animals was approved by

the reporting ethical committee and the ministry under the agreement #03130.20.
Ethics committee: CCEA-IC, Instances: Higher Education of the Ministry for
Education and Research (France).

Cell culture. The cell line Daoy was obtained from American Type Culture Col-
lection (ATCC, Manassas, VA) and was grown in Dulbecco’s Modified Eagle’s
medium (DMEM)+GlutaMAX-I high glucose medium (Thermo Fisher Scientific,
Waltham, MA, #31966021) supplemented with 10% fetal bovine serum (FBS) (Merck,
Darmstadt, Germany #F9665) and 1% penicillin/streptomycin (P/S) (Merck, #P4333).
Cell line CHLA-266 was purchased from CCcells (Childhood Cancer Repository) and
was grown in 1x Iscove’s Modified Dulbecco’s medium (IMDM; Thermo Fisher
Scientific, #12440053) supplemented with 20% FBS, 4mM L-glutamine (Thermo
Fisher Scientific, #25030032) and 1% insulin transferrin selenium (Thermo Fisher
Scientific, #41400045). HHU-ATRT1 cells were generated at the University Hospital
Düsseldorf (ethical permission #2018-102) and were grown in Neurobasal-A medium
(Thermo Fisher Scientific, #10888022) complemented with 2mM L-glutamine, 1%
P/S, 0,0075% bovine serum albumin (BSA), B-27 supplement 1x (Thermo Fisher
Scientific, #12587001), heparin (4 µg/ml, StemCell, #07980), recombinant epidermal
growth factor (EGF, 10 ng/ml, Thermo Fisher Scientific, #RP-10914) and basic
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Fig. 6 Loss of HHIP-AS1 extends survival in SHH-driven brain tumor models in vivo. a,b Kaplan–Meier estimates of nude mice orthotopically engrafted
with stably HHIP-AS1-silenced (sh-HHIP-AS1#1) Daoy (a, n= 13 mice) and CHLA-266 (b, n= 13 mice) cells compared to corresponding controls (sh-scr),
respectively. c Survival curves of nude mice orthotopically engrafted with transiently HHIP-AS1-silenced (sh-HHIP-AS1#1) SHH-Med-1712-FH cells
(n= 17mice). For panels a, b, and c, the median survivals were compared using Mantel–Cox test. d,e Three controls and three HHIP-AS1-depleted SHH-
Med-1712-FH tumors were immunostained for Ki67 (yellow, d, white scale bar: 100 µm), γH2AX (red, e, white scale bar: 40 µm) and the percentage of
positive stained tumor cells is plotted in the bar graphs as mean ± SD. Nuclei are stained with DAPI (blue). Both, control (ctrl= sh-scr) and sh-HHIP-AS1#1
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fibroblast growth factor (FGF, 10 ng/ml, Biomol, #HZ-1285). The cell line HD-MB03
was a generous gift of Dr. Till Milde, KiTZ, Hopp Children´s Cancer Center Hei-
delberg, and was grown in RPMI1640 (Thermo Fisher Scientific, #22400089) sup-
plemented with 10% FBS and 1% MEM non-essential amino acids (Thermo Fisher
Scientific, #11140050). Cell lines CHLA-01 and CHLA-04 were purchased from
ATCC (CHLA-01, #ATCC CRL-3021 and CHLA-04, #ATCC CRL-3036) and grown
in DMEM/F12 (Thermo Fisher Scientific, #11330-032) complemented with 2% B27,
20 ng/mL EGF and FGF. Neuronal stem cells (NSCs, H9 hESC-Derived) were pur-
chased from Thermo Fischer Scientific (#GIBCO N7800100) and cultivated according
to manufactures’ protocol. The cell line RH30 was a generous gift of Prof Simone
Fulda, Head of Christian-Albrechts-University Kiel, Germany, and was grown in
RPMI1640 (Thermo Fisher Scientific, #22400089) complemented with 10% FBS, 1%
P/S, 1% Sodium Pyruvate (100mM, Thermo Fisher Scientific, #11360-070). UI226
cell line was a generous gift of Prof Anthony Oro and Dr. Francois Kuonen,
Department of Dermatology, Stanford University, USA, and was grown in KO-
DMEM F12 cell culture media (Thermo Fisher Scientific, #A10509-01) and com-
plemented with 1x supplement (Thermo Fisher Scientific, # A10509-01), 200nM
L-glutamine and 20 ng/ml of FGF and EGF. All cell lines were incubated at 37 °C and
5% CO2. For SHH activation or inhibition, parental cells were treated with 50 nM
smoothened agonist (Merck, #566661) or 1 µM cyclopamine (MedChemExpress,
Sollentuna, Sweden, #HY-17024), respectively, for 24 h. SHH MB PDX lines, namely
ICN-MB1254 and Med-1712-FH55 were grown in vitro in Neurobasal-A medium
supplemented with 2mM L-glutamine, 1% P/S, 0.45% D-glucose (Merck, #G7528),
0.4% BSA (Merck, #A9165), B27 and N-acetyl-L-cysteine (Merck, #A9576). Ortho-
topic engraftment was performed as previously described54. PDX cells were cultured
in vitro exclusively for the time required for transducing them with lentiviruses. Daoy
cells were co-infected with sh-HHIP-AS1 and MSCV-IRES-Luciferase lentiviruses
prior orthotopic injection. Tumor growth was followed by Xenogen Ivis Spectrum
imaging system (Perkin-Elmer). Patient-derived MB cells were freshly isolated from
tissue samples obtained by surgical resection at the Department of Neurosurgery,
University Hospital Düsseldorf with informed consent by the patients and approval
by the institutional review board (study number: 2018-102). Cells were cultivated for
3 days before transient siRNA knockdown of HHIP-AS1 was performed.

Transient siRNA and miRNA transfection. Parental Daoy, CHLA-266, HHU-
ATRT1, HD-MB03, CHLA-01, CHLA-04, RH30, NSC and patient-derived MB
cells were transfected with 10 nmol siPOOLs (HHIP-AS1, DYNC1I2, see “Oligo-
nucleotides” section in Table S3) using Lipofectamine RNAiMAX reagent (Thermo
Fisher Scientific, #13778150) and harvested for RNA isolation after 48 and/or 72 h
after transfection or were used for further analyses including EdU incorporation,
colony formation assays, CTG and immunoblotting. For miRNA inhibition
experiments, shRNA models of each cell line (included scramble as control, sh-
HHIP-AS1#1 and sh-HHIP-AS1#2) were seeded into six-well plates. After reaching
about 80% confluency, cells were transfected using Lipofectamine RNAiMAX
either with the miRNA inhibitor for miR-425-5p, miR-425-3p or the negative
miRNA inhibitor control (see “Oligonucleotides” in Table S3).

shRNA cloning and lentiviral transduction. shRNAs of indicated sequences (see
“Oligonucleotides” in Table S3) were cloned into pLK0.1-TRC-Puro (Addgene,
Watertown, MA, #10878). Pseudotyped lentivirus was generated as previously
described31, and HEK293T cells were transfected with a packaging plasmid,
envelope plasmid, and the generated shRNA vector plasmid using poly-
ethylenimine (Merck, #408727). Virus was collected 48 h and 72 h after transfec-
tion, 0.4 μm filtered, and used directly for transduction with polybrene (Merck,
#TR-1003-G). Successfully infected cells were selected in puromycin (0.8–1.5 μg/
ml; Merck, #P8833) containing medium.

Overexpression. For the overexpression of DYNC1I2, GLI and HHIP-AS1 in
Daoy, we used a transcriptional activation by an engineered CRISPR-Cas9 complex
referred to as “SAM”. Cloning of SAM sgRNA was performed as previously
described56; for sequence details, see “gDYNC OE”, “gGLI OE” and “gHHIP-AS1
OE” in “Oligonucleotides” section in Table S3. After stable transduction of the
sgRNAs, we performed a transient knockdown of HHIP-AS1 as described in sec-
tion “Transient siRNA and miRNA transfection”.

RNA extraction, cDNA synthesis and qRT-PCR. Total RNA was extracted using
TRIzol (Thermo Fisher Scientific, #15596018) according to the manufacturer’s
instructions or by using the MaxWell system (Promega, #AS1340). Isolated RNA
was quantified by spectrophotometry and 500 ng of RNA was retrotranscribed to
total cDNA using random hexamer and oligo-dT primer mix (Promega, Madison,
WI, #C110A), dNTP mix (Promega, #U1511), M-MLV-RT 5X buffer (Promega,
#M3681), M-MLV RT, RNase (H–), point mutant (Promega, #M368C) and
RNasin-Plus ribonuclease inhibitor (Promega, #N2511). Resulting cDNA was
analyzed by TaqMan-based qRT-PCR containing FAM-labeled probes. All reac-
tions were performed in triplicates using a “CFX384 Touch Real-Time PCR
Detection System” (Bio-Rad, Hercules, CA). Relative expression levels of candidate
genes were acquired by normalization against the housekeeper genes GUSB,
HPRT1 and PPIA.

MiRNA extraction, cDNA synthesis and qRT-PCR. MicroRNAs (miRNA) were
extracted using the “Maxwell RSC miRNA Kit” (Promega, #AS1470) according to
the manufacturer’s instructions. Afterwards the “Applied Biosystems™ TaqMan™
Advanced miRNA cDNA Synthesis Kit” (Thermo Fisher Scientific, #A28007) was
used according to the manufacturer’s instructions. For qRT-PCR analyses single-
plex miRNA Assays (Thermo Fisher Scientific) for hsa-miR-425-5p (SM-10204)
and hsa-miR191 (SM-20786) as a control were used.

Primers, siRNAs, raPOOLs and shRNAs. TaqMan-based primers were purchased
from IDTdna: DYNC1I2 (Hs.PT.58.3736795); GLI1 (Hs.PT.58.26486279), GLI2
(Hs.PT.58.45642781); GUSB (Hs.PT.58 v.27737538); HHIP (Hs.PT.58.40948312);
HHIP-AS1 (Hs.PT.58.613732); HPRT1 (Hs.PT.58 v.45621572); MALAT1
(Hs.PT.58.26451167.g); PPIA (Hs.PT.39a.22214851); ppia (Mm.PT.39a.2.gs), b2m
(Mm.PT.39a.22214835), gusb (Mm.PT.39a.22214848), hhip (Mm.PT.58.29299649)
and gli1 (Mm.PT.58.11933824). siRNA pools, consisting of 30 different siRNAs,
were purchased from siTOOLs Biotech (Martinsried, Germany): HHIP-AS1
(#646576- 10 nmol); DYNC1I2 (#1781- 10 nmol); raPOOLs, consisting of 30
biotinylated RNA probes, were also from siTOOLs Biotech: HHIP-AS1
(#raPOOL646576 –5 nmol).

Immunoblots. Immunoblots experiments were performed using the following
primary antibodies: anti-DYNC1I2 (Atlas Antibodies, Bromma, Sweden,
#HPA040619, 1:1000), mouse anti-β-Actin (C4) (Santa Cruz Biotechnology, Hei-
delberg, Germany, #sc-47778, 1:1000) or mouse anti-β-Actin (Cell Signaling
Technology, Danvers, MA, #3700, 1:1000), mouse anti-HHIP (Abnova Germany;
#H00064399-M01; 1:1000); mouse anti-GLI2 (Santa Cruz Biotechnology, Heidel-
berg, Germany, #sc-271786, 1:500); rabbit anti-GLI1 (Cell Signaling Technology,
Danvers, MA, #V812,1:1000).

Luciferase reporter assay. Promoter insert (Chromosome 4: 144,645,400-
144,647,801; hg19 coordinates) was subcloned into pGL4.22 [luc2CP/Puro] Vector
(Promega, #DQ188841) in two orientations. The forward sequence (“HHIP-fw”)
was flipped around for the “HHIP-rv” sequence. The correctness of insert orien-
tations was confirmed by sequencing. The reporter activity was measured by using
“Dual-Luciferase Reporter Assay System” (Promega, #E1910) according to the
manufacturer’s instructions. The 3'- and 5'-Luciferase reporter gene assays were
performed as described previously57 except for transfecting cells with 50 nM of pre-
miR miRNA precursor hsa-miR-425-5p (Thermo Fisher Scientific, #17100) and
control cells with 50 nM of the pre-miR miRNA precursor negative control #1
(Thermo Fisher Scientific, #AM17110).

RNA fluorescence in situ hybridization (FISH). FISH was carried out based on
the Stellaris RNA FISH protocol according to the manufactory. Daoy and CHLA-
266 cells were fixed in 4% formaldehyde (Merck, #100496.8350) at room tem-
perature for 10 min. Cells were permeabilized in 70% ethanol at 4 °C for 1 h fol-
lowed by hybridization with FITC-labeled HHIP-AS and ATTO655-labeled
DYN1I2 probes in hybridization buffer (10% formamide, 10% dextran sulfate, 2x
saline sodium citrate) at 37 °C overnight. Nuclei were stained with 4', 6-diamidino-
2-phenylindole (DAPI). Images were acquired using a wide field fluorescence
microscope Axio Observer.Z1 (Carl Zeiss Microscopy, Jena, Germany) with an
ApoTome 2 (Zeiss) attachment.

Bio-Layer interferometry. Bio-Layer interferometry (BLI) has been a promising
technique to study the RNA-RNA binding interaction58. We used the “Fortebio Blitz
System” (Fortebio, Fremont, CA) to study the interaction between the proposed RNA
sequences along with a negative control sequence. We used 1x RNA binding buffer
(RBB) containing 10mM Tris-HCl pH 8.0, 125mM NaCl, 125mM KCl & 25mM
MgCl2 to perform all binding studies. We used a modified protocol from58 to study
the binding interaction in our system. Basically, SSA biosensor tips were hydrated in
RBB for at least 10 min. Next, 200 nM of biotinylated DYNC1I2 sequence (ordered
from IDTdna, see section “In silico analysis of RNA binding”) was loaded for 15min
after performing an initial baseline of the unloaded sensors for 30 s in RBB. Subse-
quently, the loaded sensors were incubated in RBB for 1min. The loaded sensors were
incubated with 200 nM of HHIP-AS1 pos/neg sequence (ordered from IDTdna, see
section “In silico analysis of RNA binding”) for 5 min in the association phase, and
dissociation of the bound sequences was studied for 5min again in RBB. All the
RNase free buffer components were purchased from “Thermo Fisher Scientific”. The
biotinylated and non-biotinylated RNA sequences were ordered from IDTdna. The
Super-Streptavidin (SSA) coated biosensors were purchased from Fortebio.

Immunofluorescence for cell proliferation, DNA damage and mitotic spindle
evaluation. For immunofluorescence experiments, parental Daoy, CHLA-266,
HHU-ATRT1, RH30 and NSC cells were seeded on 8-well glass slides (Nunc™ Lab-
Tek™ II Chamber Slide™ System, Thermo Fisher Scientific, #154534). The next day,
cells were transfected using siPOOLs as described above for transient knockdown.
Stable generated shRNA models for each cell line (included scr as control, sh-
HHIP-AS1#1 and sh-HHIP-AS1#2) were also seeded on 8-well glass slides. SHH
MB PDX cells of ICN-MB12 were seeded on 8-well glass slides (Millicell EZ slide,
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Merck, #PEZGS0816) pre-coated with poly-D-lysine (Merck, #A-003-E) and
Matrigel (Dutscher, Brumath, France #354230). Lentiviral transduction with
shRNA constructs was performed 2 h after seeding. Cells were maintained in
culture for 10 days, passing them when confluence was reached. A pulse of 10 μM
BrdU (BD Biosciences, #550891) was provided before fixation with 4% PFA for
20 min. For orthotopic SHH MB tumors of Med-1712-FH PDX line, whole mouse
brains bearing the tumor were fixed for 10 h in 4% PFA. The tissue was then
embedded in paraffin and sagittal sections (3 μm) were obtained using microtome
(Leica, Wetzlar, Germany). Proliferation analysis in Daoy, CHLA-266, HHU-
ATRT1 and patient-derived MB cells was performed 72 h after transient, siRNA-
mediated knockdown of HHIP-AS1 using the “Click-iT EdU Alexa-Fluor 488
Imaging Kit” (Thermo Fisher Scientific, #C10337) according to the manufacturer’s
instructions. PDX cells in vitro and orthotopic PDX tissue sections were instead
stained with 1:400 rabbit anti-Ki67 (Merck Millipore, Darmstadt, Germany,
#AB9260), 1:1000 rabbit anti-NeuN (Abcam, #ab177487), 1:100 Rabbit anti-
Cleaved Caspase 3 (D175, Cell Signaling, #9661S), 1:100 mouse anti-phospho-
γH2AX (JBW301,Merck Millipore, Darmstadt, Germany, #05-636-I) for in vivo
tissue slides or 1:400 rabbit anti-phospho-histone γH2A.X (Cell Signaling,
Frankfurt, Germany #9718) for in vitro staining and 1:500 anti-BrdU (Bio-Rad
AbD Serotec, Oxford, UK, #OBT0030G) primary antibodies. For DNA damage
in vitro studies, neuronal stem cells or Daoy were seeded on 8-well glass slides
(Nunc™ Lab-Tek™ II Chamber Slide™ System, Thermo Fisher Scientific, #154534)
fixed in paraformaldehyde, rinsed in phosphate-buffered saline, and incubated with
γH2AX antibodies and then Alexa 568-conjugated goat anti-rabbit IgG as sec-
ondary antibody. Slides mounted with Slow-Fade antifade reagent were imaged on
an Zeiss inverted Apotome microscope with a ×63 oil immersion objective (Zeiss).
Before counting foci, digital images were processed with ImageJ (LOCI, University
of Wisconsin) to adjust brightness and contrast. Cells were evaluated as “positive”
for γH2AX foci if they displayed >10 discrete dots of brightness. For tumor sec-
tions, only distinct and bright cells for γH2AX were counted as positive cells.
Mitotic spindle staining was achieved by staining cells with 1:500 rabbit anti-
pericentrin (Abcam, Cambridge, UK, #AB 4448) and 1:500 mouse anti-acetylated
tubulin (Merck, #T6793) primary antibodies, detecting the centrosomes and the
microtubules of the spindle, respectively.

In all cases, secondary antibodies were species-specific: chicken anti-rabbit IgG
(H+ L) cross-adsorbed secondary antibody, Alexa-Fluor-488 labeled (Thermo
Fisher Scientific, #A-21441) and goat anti-mouse IgG2b cross-adsorbed secondary
antibody, Alexa-Fluor-594 labeled (Thermo Fisher Scientific, #A-21145).

Clonogenic, caspase 3/7 activity and cell viability assays. For the analysis of
self-renewal capacity, clonogenicity was analyzed. Daoy, CHLA-266 and HHU-
ATRT1 were seeded on 10 cm dishes at the appropriate density and cultured for
1–3 weeks. For transient knockdown approach, cells were transfected with siPOOL
against HHIP-AS1 as described above after 24 h of seeding. Stable shRNA models
of each cell line (included control, sh-HHIP-AS1#1 and sh-HHIP-AS1#2) were also
seeded in 10 cm dishes at the appropriate density and cultured for 1–3 weeks. The
cells were washed with PBS, fixed in 10% formaldehyde for 30 min at RT and
stained in 1% crystal violet for 1 h at RT. Next, cells were washed in ddH2O and the
number of colonies was quantified. Caspase 3/7 activity was measured using
Caspase-Glo 3/7 Assay System (Promega, Walldorf, Germany, #G8091) and cell
viability assessment was determined by metabolic assay, using CellTiter-Glo
Luminescent Cell Viability Assay (Promega, Walldorf, Germany, #G7570)
according to the manufacturer’s instructions.

In silico analysis of RNA binding. The potential binding between HHIP-AS1 and
DYNC1I2mRNA was analyzed in silico using IntaRNA59,60 and http://rtools.cbrc.jp/
bioinformatics web servers. We detected a 24 nt long sequence (CCCTTGCCTACAA
CCAGACTGACA) in HHIP-AS1, which binds to the 5´UTR region of DYNC1I2.
This sequence we used as a “positive binding” probe for mRNA stability assay and we
designed another sequence with a similar G/C content from HHIP-AS1 that was
predicted not to bind DYNC1I2, as a negative control (TTCAGCCTCCAAGGGG
GCTTTTAA). Secondary structures of two RNAs forming dimers were predicted
with RNACOFOLD61, which takes into account intra- as well as intermolecular base
pairs of both sequences. Secondary structures of single sequences were predicted with
RNAFOLD. All calculations were performed at T= 37 °C and all used programs were
from the “ViennaRNA package” v. 2.4.662.

mRNA stability assay. Cells were pretreated either in the presence or absence of
positive binding sequence (HHIP-AS1bind; see “in silico analysis of RNA binding”)
or “not binding” sequence (HHIP-AS1neg) before the addition of actinomycin D
(Hycultek; 10 μg/ml final concentration), a potent inhibitor of mRNA synthesis.
Afterwards, total mRNA was extracted at 0–9 h and DYNC1I2 abundance was
measured by qRT-PCR.

RNA sequencing and conservation analysis. For RNA sequencing analysis, reads
generated from Daoy scr (control), Daoy sh-HHIP-AS1#1, Daoy sh-HHIP-AS1#2,
CHLA-266 scr (control), CHLA-266 sh-HHIP-AS1#1and CHLA-266 sh-HHIP-
AS1#2 were filtered, normalized and aligned to the human genome hg38 using

STAR (v2.4.1d), unaligned reads were further aligned using BOWTIE2 (v2.2.5) and
combined reads were quantified using the partek expectation-maximization algo-
rithm against ENSEMBL release 84. For conservation analyses across species, the
genomic loci and surrounding genomic regions for the species were analyzed using
ECR browser (https://ecrbrowser.dcode.org/) and Ensembl (https://www.ensembl.
org/index.html). Annotated species-specific exonic and intronic regions are high-
lighted in yellow or orange, respectively. Used RefSeq datasets were: zebrafish
[danRer7], chicken [galGal3], rat [rn4], mouse [mm10], rhesus macaque [rhe-
Mac2], chimpanzee [panTro3] and human [hg19].

Proteomic analyses
Sample preparation. Proteins were extracted from frozen cell pellets as previously
described63. Briefly, cells were homogenized in urea buffer with a “TissueLyser”
(Qiagen, Hilden, Germany) and subsequent sonication. After centrifugation for
15 min at 14,000 g and 4 °C, supernatants were collected. Protein concentration was
determined via pierce 660 nm protein assay (Thermo Fisher Scientific) and 10 µg
protein per sample were desalted through electrophoretic migration at 50 V for
10 min on a 4–12% bis-tris polyacrylamide gel (Thermo Fisher Scientific,
#NP0322BOX). After silver staining, protein bands were cut out, reduced, alkylated
and digested with trypsin before peptide extraction via sonication. Peptides were
dissolved and diluted with 0.1% TFA (v/v).

LC-MS analysis. For mass spectrometric analysis, 15 µl peptide solution per sample
was analyzed on a nano-high-performance liquid chromatography electrospray
ionization mass spectrometer. The analytical system was composed of a
“RSLCnano U3000 HPLC” coupled to a “Orbitrap Elite mass spectrometer via a
nano-electrospray ion source” (Thermo Fisher Scientific). Injected peptides were
concentrated and desalted at a flow rate of 6 µl/min on a trapping column (Acclaim
PepMao C18, 2 cm × 100 µm × 3 µm particle size, 100 Å pore size, Thermo Fisher
Scientific) with 0.1% TFA (v/v) for 10 min. Subsequently, peptides were separated
at a constant flowrate of 300 nl/min over a 120 min gradient on an analytical
column (Acclaim PepMap RSLC C18, 25 cm × 75 µm × 2 µm particle size, 100 Å
pore size, Thermo Fisher Scientific) at 60 °C. Separation was achieved through a
gradient from 4 to 40% solvent B (solvent A: 0.1% (v/v) formic acid in water,
solvent B: 0.1% (v/v) formic acid, 84% (v/v) acetonitrile in water). Afterwards,
peptides were ionized at a voltage of 1.400 V and introduced into the mass spec-
trometer operated in positive mode. Mass spectrometry scans were recorded in
profile mode in a range from 350–1700 m/z at a resolution of 60,000 while tandem
mass spectra were recorded in the ion trap at normal scan rate. Tandem mass
spectra were recorded with a data dependent Top 20 method and 35% normalized
collision energy. Dynamic exclusion was activated with a repeat count of 1 for 45 s
and only charge states 2+ and 3+ were analyzed.

Computational mass spectrometric data analysis. Proteome discoverer (version
1.4.1.14, Thermo Fisher Scientific) was applied for peptide/protein identification
with mascot (version 2.4, Matrix Science) as search engine employing the UniProt
database (human; including isoforms; date 2016-11-01). A false discovery rate of
1% (p ≤ 0.01) on peptide level was set as the identification threshold. Proteins were
quantified with Progenesis QI for Proteomics (Version 2.0, Nonlinear Dynamics,
Waters Corporation).

Statistics. Unless otherwise indicated in the figure legends, error bars represent
mean ± SD or SEM of at least three independent experiments for each genotype or
sample, and the used statistical test is indicated in each figure legend. Graphs were
generated by using GraphPad PRISM ® Version 9 Graphpad Software.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Previously published gene expression and methylation data used in Fig. 1a–e, 3b, S1b–f,
S5a, b, S7a, c–e are available under ‘R2: Genomics Analysis and Visualization Platform
(http://r2.amc.nl)’. RNA sequence data that support the findings of this study have been
deposited in GenBank with the #GSE140741 accession code and proteomic data have
been deposited in ProteomeXchange PRIDE database with the #PXD016550 accession
code. The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files. Proteome discoverer (version
1.4.1.14, Thermo Fisher Scientific) was applied for peptide/protein identification with
mascot (version 2.4, Matrix Science) as search engine employing the UniProt database
(human; including isoforms; date 2016-11-01). The raw data behind data points in
figures and that support the findings of this study are available in the linked. Source data
provided with this paper.
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