000909187 001__ 909187
000909187 005__ 20240712113129.0
000909187 0247_ $$2doi$$a10.1021/acsaem.2c00533
000909187 0247_ $$2Handle$$a2128/31650
000909187 0247_ $$2WOS$$aWOS:000819121400001
000909187 037__ $$aFZJ-2022-03055
000909187 082__ $$a540
000909187 1001_ $$0P:(DE-Juel1)177016$$aRoitzheim, Christoph$$b0$$ufzj
000909187 245__ $$aAll-Solid-State Li Batteries with NCM–Garnet-Based Composite Cathodes: The Impact of NCM Composition on Material Compatibility
000909187 260__ $$aWashington, DC$$bACS Publications$$c2022
000909187 3367_ $$2DRIVER$$aarticle
000909187 3367_ $$2DataCite$$aOutput Types/Journal article
000909187 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661159950_2168
000909187 3367_ $$2BibTeX$$aARTICLE
000909187 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909187 3367_ $$00$$2EndNote$$aJournal Article
000909187 520__ $$aGarnet-based all-solid-state batteries (ASBs) with high energy density require composite cathodes with high areal loading and high-capacity cathode active materials. While all ceramic cathodes can typically be manufactured via cosintering, the elevated temperatures necessary for this process pose challenges with respect to material compatibility. High-capacity cathode active materials like Ni-rich LiNixCoyMn1–x–yO2 (NCM) show insufficient material compatibility toward the solid electrolyte Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO:Ta) during cosintering, leading to the formation of highly resistive interphases. We investigated this secondary phase formation both experimentally and via density functional theory calculation to get a mechanistic understanding of the cosintering behavior of LLZO:Ta with NCM111 and Ni-rich NCM811. Furthermore, we employed B doping of both NCM materials in order to assess its impact on the cation interchange and subsequent secondary phase formation. While secondary phases were formed for all four NCM materials, their onset temperature, nature, and amount strongly depend on the NCM composition and doping. Surprisingly, Ni-rich NCM811 turned out to be the most promising cathode active material for the combination with garnet-type LLZO:Ta. As proof of concept, fully inorganic, ceramic all-solid-state lithium batteries featuring only a Li-metal anode, an LLZO:Ta separator, and a composite cathode, consisting of LLZO:Ta, Li3BO3, and NCM811, were prepared by conventional sintering. The purely inorganic full cells delivered a high specific areal discharge capacity of 0.7 mA h cm–2 in the initial cycle.
000909187 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000909187 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909187 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b1$$ufzj
000909187 7001_ $$0P:(DE-Juel1)178838$$aKuo, Liang-Yin$$b2
000909187 7001_ $$0P:(DE-Juel1)169991$$aHäuschen, Grit$$b3$$ufzj
000909187 7001_ $$0P:(DE-Juel1)179291$$aMann, Markus$$b4
000909187 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b5$$ufzj
000909187 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b6$$eCorresponding author
000909187 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b7$$ufzj
000909187 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b8$$ufzj
000909187 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b9
000909187 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.2c00533$$gVol. 5, no. 6, p. 6913 - 6926$$n6$$p6913 - 6926$$tACS applied energy materials$$v5$$x2574-0962$$y2022
000909187 8564_ $$uhttps://juser.fz-juelich.de/record/909187/files/acsaem.2c00533-2.pdf$$yRestricted
000909187 8564_ $$uhttps://juser.fz-juelich.de/record/909187/files/Post-print-1.pdf$$yPublished on 2022-06-08. Available in OpenAccess from 2023-06-08.
000909187 909CO $$ooai:juser.fz-juelich.de:909187$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177016$$aForschungszentrum Jülich$$b0$$kFZJ
000909187 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177016$$a Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE) $$b0
000909187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b1$$kFZJ
000909187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178838$$aForschungszentrum Jülich$$b2$$kFZJ
000909187 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)178838$$a Department of Chemical Engineering, Ming Chi University of Technology$$b2
000909187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169991$$aForschungszentrum Jülich$$b3$$kFZJ
000909187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179291$$aForschungszentrum Jülich$$b4$$kFZJ
000909187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b5$$kFZJ
000909187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b6$$kFZJ
000909187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b7$$kFZJ
000909187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b8$$kFZJ
000909187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b9$$kFZJ
000909187 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)171780$$a Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE) $$b9
000909187 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000909187 9141_ $$y2022
000909187 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000909187 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000909187 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000909187 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2021$$d2022-11-15
000909187 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000909187 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000909187 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000909187 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-15
000909187 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000909187 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000909187 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2021$$d2022-11-15
000909187 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000909187 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000909187 9801_ $$aFullTexts
000909187 980__ $$ajournal
000909187 980__ $$aVDB
000909187 980__ $$aUNRESTRICTED
000909187 980__ $$aI:(DE-Juel1)IEK-1-20101013
000909187 980__ $$aI:(DE-Juel1)IEK-12-20141217
000909187 981__ $$aI:(DE-Juel1)IMD-4-20141217
000909187 981__ $$aI:(DE-Juel1)IMD-2-20101013