




⏱







🖧
🖧





🖧

🖳

🖥🖥🖥

🖥🖥🖥 🗱🖥

🖧
Unit tests

Static checks

Functional tests
Regression tests

methods behave as expected

code avoids simple smells

examples work as described
functionality tests
simple validation

Local integration tests

Packaging & deployments

Larger framework integration

Full-stack testing

Software works in cooperation with other tools

Different distribution channels are prepared,
images and containers are built

Installation in larger software stack
 with additional constraints on dependencies

Tools work in cooperation
with external services

Environment

developer-local
machine or

resource

forked repo
CI chain

main central repo
CI chain

framework-fork
CI chain

package repo
CI chain

framework central
CI chain

framework central
CI chain

Benchmark test

github.com/nest/nest-simulator,
github.com/<user>/nest-simulator

github.com/nest/nest-simulator,
gitlab.ebrains.eu/nest/nest-simulator

jugit.fz-juelich.de/nest/nest-simulator

Processes

cppcheck, clang-format
pylint, flake8, pydocstyle,

rstcheck

own test framework (SLI and Python),
boost test suite, pydoctest, pytest,

mypy, vale, lychee, …

run more complex examples,
small analyses and workflows

build and test-install various packaging
options (deb, rpm, conda, docker, …)

spack install full environment
run use-cases and workflows

front-end and service
interactions

(robotframework)

Development
Level

software features
& performance

functionality
& validation

interoperability
& interfaces

ecosystem
integration

framework
integration

service &
operation

gitlab.ebrains.eu/.../technical-coordination

OpenStack; OpenShift-Jobs

"cron" jobs, uptimerobot, etc.

github.com/<user>/nest-simulator,
~/nest-simulator

no adverse effects on performance forks near
resources

beNNch, vTune, perf-tools, …
architecture & model

independence

github.com/…/conda-feedstock,
dockerhub, obs, *.ebrains.eu

laptop or
workstation

VMs

HPC or
special hardware

VMs

"cloud" resources,
HPC

all

Underlying
Resources

NEST testing and deployment pipelines
Dennis Terhorst for the NEST Community
Institute of Neuroscience and Medicine (INM-6 Computational and Systems Neuroscience & Theoretical Neuroscience,
Institute for Advanced Simulation (IAS-6) Jülich Research Centre, Member of the Helmholz Association and JARA, Jülich

Process LocationResultLevel

© Susanne Kunkel



Technical Setup

Administrative and Organizational Questions

Responsibility for "middleware"?

DEVELOPERS TECHNICAL
COORDINATION

USERS

User A
repo

User B
repo

User C
repo

TC
repo

LAB-INT LAB

Experimental image
(Ubuntu x+1)

Recommended image
(Ubuntu x)

Recommended Image
(Ubuntu x)

release-21.12
release-22.03

release-21.12 release-21.12

mount-int mount-prod

X/
 tools-21.12

X/
 tools-21.12
 tools-22.03
X+1/
 tools-22.03

dirty-mount-int

GITLAB

gitlab-ci

X/
 tools-21.12
 tools-22.03 (bld-4567)
X+1/
 tools-22.03 (bld-4568)
 tools-build-1234
 tools-build-2345
 tools-build-3456

pre-release
test

EBRAINS
release

full integration
test

image
update

ful integration
test

"mount"

EBRAINS
release

image
update

LAB-DEV

Experimental image
(Ubuntu x+2)

Experimental image
(RHEL y)

mount-dev

pull-request

clone / fork

image
update

test

What mechanisms of collaboration
and protection are required?

How can different available resources
efficiently and effectively be used together?

How can users understand how to
combine the best tools for the job?

♺ 

NEST-Simulator.org
NEST-Simulator.org/documentation
NEST-Initiative.org
github.com/nest/nest-simulator
ebrains.eu/service/nest-simulator

