000909243 001__ 909243
000909243 005__ 20240712113130.0
000909243 0247_ $$2doi$$a10.1002/celc.202200600
000909243 0247_ $$2Handle$$a2128/31848
000909243 0247_ $$2WOS$$aWOS:000839504800001
000909243 037__ $$aFZJ-2022-03081
000909243 082__ $$a540
000909243 1001_ $$0P:(DE-HGF)0$$aKünne, Sven$$b0
000909243 245__ $$aComparative Study on Chitosans as Green Binder Materials for LiMn 2 O 4 Positive Electrodes in Lithium Ion Batteries
000909243 260__ $$aWeinheim$$bWiley-VCH$$c2022
000909243 3367_ $$2DRIVER$$aarticle
000909243 3367_ $$2DataCite$$aOutput Types/Journal article
000909243 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663235362_4692
000909243 3367_ $$2BibTeX$$aARTICLE
000909243 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909243 3367_ $$00$$2EndNote$$aJournal Article
000909243 520__ $$aThe increasing demand for lithium ion batteries consequently involves research on environmentally benign materials and processing routes. Environmentally friendly cobalt-free, and fluorine-free electrodes processed without organic solvents were targeted as this approach combines high work safety and sustainability with good electrochemical performance. In this study, chitosan-based biopolymers were synthesized and systematically investigated for the first time as “green” binders for positive electrodes utilizing LiMn2O4 (LMO). In particular, chitosans with different specifically designed low and high degrees of polymerization (DP), each with comparable degree of acetylation (DA), revealed insights into the impact on the mechanical and electrochemical performance of LMO positive electrodes. Herein, low DP chitosan provided twice the adhesion strength compared to the state-of-the-art binder polyvinylidene difluoride (PVdF) in LMO electrodes, thus, showing the opportunity to reduce the binder content and increase the specific energy. Electrodes with DA<16 % chitosan-based binder could deliver higher discharge capacities than cathodes using PVdF or chitosans with DA>16 % in LMO||Li metal cells. Cross-linking of chitosans with citric acid (CA) was demonstrated to significantly increase the discharge capacity up to 80 mAh g−1 at 10 C charge/discharge rate.
000909243 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000909243 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909243 7001_ $$0P:(DE-HGF)0$$aPüttmann, Frederik$$b1
000909243 7001_ $$0P:(DE-HGF)0$$aLinhorst, Max$$b2
000909243 7001_ $$00000-0001-6067-3205$$aMoerschbacher, Bruno M.$$b3
000909243 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4
000909243 7001_ $$0P:(DE-Juel1)174577$$aLi, Jie$$b5$$eCorresponding author$$ufzj
000909243 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b6
000909243 773__ $$0PERI:(DE-600)2724978-5$$a10.1002/celc.202200600$$n17$$pe202200600$$tChemElectroChem$$v9$$x2196-0216$$y2022
000909243 8564_ $$uhttps://juser.fz-juelich.de/record/909243/files/ChemElectroChem%20-%202022%20-%20K%20nne%20-%20Comparative%20Study%20on%20Chitosans%20as%20Green%20Binder%20Materials%20for%20LiMn2O4%20Positive%20Electrodes.pdf$$yOpenAccess
000909243 909CO $$ooai:juser.fz-juelich.de:909243$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000909243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174577$$aForschungszentrum Jülich$$b5$$kFZJ
000909243 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000909243 9141_ $$y2022
000909243 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909243 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000909243 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000909243 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909243 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000909243 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMELECTROCHEM : 2021$$d2022-11-17
000909243 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000909243 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000909243 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000909243 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000909243 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-17
000909243 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000909243 920__ $$lyes
000909243 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000909243 9801_ $$aFullTexts
000909243 980__ $$ajournal
000909243 980__ $$aVDB
000909243 980__ $$aUNRESTRICTED
000909243 980__ $$aI:(DE-Juel1)IEK-12-20141217
000909243 981__ $$aI:(DE-Juel1)IMD-4-20141217