001     909243
005     20240712113130.0
024 7 _ |a 10.1002/celc.202200600
|2 doi
024 7 _ |a 2128/31848
|2 Handle
024 7 _ |a WOS:000839504800001
|2 WOS
037 _ _ |a FZJ-2022-03081
082 _ _ |a 540
100 1 _ |a Künne, Sven
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Comparative Study on Chitosans as Green Binder Materials for LiMn 2 O 4 Positive Electrodes in Lithium Ion Batteries
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1663235362_4692
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The increasing demand for lithium ion batteries consequently involves research on environmentally benign materials and processing routes. Environmentally friendly cobalt-free, and fluorine-free electrodes processed without organic solvents were targeted as this approach combines high work safety and sustainability with good electrochemical performance. In this study, chitosan-based biopolymers were synthesized and systematically investigated for the first time as “green” binders for positive electrodes utilizing LiMn2O4 (LMO). In particular, chitosans with different specifically designed low and high degrees of polymerization (DP), each with comparable degree of acetylation (DA), revealed insights into the impact on the mechanical and electrochemical performance of LMO positive electrodes. Herein, low DP chitosan provided twice the adhesion strength compared to the state-of-the-art binder polyvinylidene difluoride (PVdF) in LMO electrodes, thus, showing the opportunity to reduce the binder content and increase the specific energy. Electrodes with DA<16 % chitosan-based binder could deliver higher discharge capacities than cathodes using PVdF or chitosans with DA>16 % in LMO||Li metal cells. Cross-linking of chitosans with citric acid (CA) was demonstrated to significantly increase the discharge capacity up to 80 mAh g−1 at 10 C charge/discharge rate.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Püttmann, Frederik
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Linhorst, Max
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Moerschbacher, Bruno M.
|0 0000-0001-6067-3205
|b 3
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
700 1 _ |a Li, Jie
|0 P:(DE-Juel1)174577
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 6
773 _ _ |a 10.1002/celc.202200600
|0 PERI:(DE-600)2724978-5
|n 17
|p e202200600
|t ChemElectroChem
|v 9
|y 2022
|x 2196-0216
856 4 _ |u https://juser.fz-juelich.de/record/909243/files/ChemElectroChem%20-%202022%20-%20K%20nne%20-%20Comparative%20Study%20on%20Chitosans%20as%20Green%20Binder%20Materials%20for%20LiMn2O4%20Positive%20Electrodes.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909243
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)174577
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMELECTROCHEM : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21