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a b s t r a c t 

An increasing number of studies have investigated the relationships between inter-individual variability in brain 

regions’ connectivity and behavioral phenotypes, making use of large population neuroimaging datasets. How- 

ever, the replicability of brain-behavior associations identified by these approaches remains an open question. In 

this study, we examined the cross-dataset replicability of brain-behavior association patterns for fluid cognition 

and openness predictions using a previously developed region-wise approach, as well as using a standard whole- 

brain approach. Overall, we found moderate similarity in patterns for fluid cognition predictions across cohorts, 

especially in the Human Connectome Project Young Adult, Human Connectome Project Aging, and Enhanced 

Nathan Kline Institute Rockland Sample cohorts, but low similarity in patterns for openness predictions. In addi- 

tion, we assessed the generalizability of prediction models in cross-dataset predictions, by training the model in 

one dataset and testing in another. Making use of the region-wise prediction approach, we showed that first, a 

moderate extent of generalizability could be achieved with fluid cognition prediction, and that, second, a set of 

common brain regions related to fluid cognition across cohorts could be identified. Nevertheless, the moderate 

replicability and generalizability could only be achieved in specific contexts. Thus, we argue that replicability and 

generalizability in connectivity-based prediction remain limited and deserve greater attention in future studies. 
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. Introduction 

In recent years, the availability of population-based neuroimaging

atasets ( Nooner et al. 2012 ; Van Essen et al. 2013 ; Caspers et al. 2014 ;

olmes et al. 2015 ) has enabled many investigations into the rela-

ionships between functional connectivity (FC) and behavior. Resting-

tate functional connectivity (RSFC) has been employed in the pre-

ictions of various psychometric variables, ranging from cognitive

easures to personality traits ( Finn et al. 2015 ; Noble et al. 2017 ;

eaty et al. 2018 ; Dubois et al. 2018a ; Dubois et al. 2018b ;

iang et al. 2018 ; Maglanoc et al. 2019 ; Avery et al. 2020 ; He et al. 2020 ;

iang et al. 2020 ). In other words, by training a model to learn the re-

ationships between RSFC and psychometric variables, the model can

nfer, to some extent, the values of these psychometric variables in a

ew sample, using the new sample’s RSFC. These approaches can be
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verall referred to connectivity-based psychometric prediction (CBPP)

pproaches. Generally, when using these approaches, a strong focus is

ut on achieving good, or at least what could be deemed decent, pre-

iction performance. To evaluate prediction performance, typically, the

ata from one dataset is repeatedly and randomly partitioned into train-

ng and test sets, where the model’s performance is thus determined

y its average prediction accuracies on the test set data. This is typi-

ally referred to as a (within cohort) cross-validation approach. In rare

ases, prediction performance may also be computed using a held-out

est set, where the accuracy measured is still within the same cohort

 Maglanoc et al. 2019 ; Avery et al. 2020 ), or out-of-sample test data,

here the accuracy is measured in a fully new cohort ( Beaty et al. 2018 ;

e et al. 2020 ; Jiang et al. 2020 ). Usually capitalizing on within-cohort

ross-validation, many studies have further investigated the technical

actors affecting the model performance and/or the neurobiological in-
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ights provided by predictive models ( Li et al. 2019 ; Pervaiz et al. 2020 ;

u et al. 2021 ; Kong et al. 2021 ). 

CBPP approaches typically require relatively large sample size

hich, however, is a very scarce resource in the field. Based on recent

urveys ( Sui et al. 2020 ; Yeung et al. 2022 ), 38 CBPP studies with rel-

tively large sample size can be identified ( 𝑁 ≥ 200 ; see Supplemental

aterials for a list of the studies), among which 71% made use of the Hu-

an Connectome Young Adult (HCP-YA; Van Essen et al. 2013 ) dataset,

hile 47% used only the HCP-YA dataset. This is expected, as the HCP-

A dataset was one of the first large population-based dataset which

ffers high-quality resting-state scans and extensive psychometric char-

cterization. Nevertheless, this brings forth the issue of generalizability,

s the HCP-YA data were distinct from other datasets in multiple as-

ects. First, the subjects involved had a specific age range of 22 to 35.

econd, most subjects involved were family members. Finally, the de-

ographic characteristics, psychometric tools, scanning protocols and

mage processing of the HCP-YA were also different from most other

atasets. The last point could be generalized to most existing datasets.

s many datasets were based on different initiatives to fulfill different

esearch questions, they would be different from each other in terms of

ample characteristics, psychometric tools, scanning protocols and im-

ge processing protocols. Consequently, results and insights obtained by

 research study performed using a single dataset would be inherently af-

ected and limited by the idiosyncrasies of that specific dataset. As more

nd more population-based datasets become available, it is necessary to

nvestigate how replicable the brain-behavior association patterns iden-

ified could be and to which extent the prediction model learnt based

n one cohort is generalizable to other cohorts. 

The motivation of this study is two-fold. First, it is necessary to in-

estigate the replicability of CBPP results, both in terms of prediction

erformance and the derived brain-behavior association patterns. Im-

ortantly, the brain-behavior association patterns derived from a pre-

iction model (or brain prediction patterns, for short) can help to in-

erpret the prediction model from a neurobiological perspective. Hence,

he patterns’ replicability across cohorts could limit the usefulness of

he model. Second, the generalizability of prediction models is also a

rucial aspect of CBPP model validity. In order for the CBPP models to

chieve practical utility, they must be generalizable to unseen data. In

articular, the brain prediction patterns and the interpretation of the

odel should remain consistent in unseen data. 

To investigate the cross-cohort replicability of brain prediction pat-

erns, we first made use of a previously proposed region-wise CBPP

ramework ( Wu et al. 2021 ) for disentangling brain-behavior relation-

hips, by building a prediction model for each brain region (or parcel)

eparately. Under this framework, an accuracy distribution map could

e constructed for a psychometric variable, illustrating the contribution

f each brain region’s connectivity profile to the prediction of this psy-

hometric variable. While such a local approach obviously simplifies the

omplexity of brain function ( Horien et al. 2019 ), it allows us to identify

elevant brain regional connectivity patterns for easier interpretation of

he prediction models, as well as for future applications based on small

ample sizes that would hence require significant features’ reduction. By

aking use of the accuracy distribution map for a specific psychomet-

ic variable as a representation for the predictive brain pattern, we can

ssess the replicability of brain prediction patterns (i.e., brain-behavior

ssociation patterns derived from a prediction model) for similar be-

avioral measurements in different cohorts. In line with the trend in

he field, we also implemented whole-brain CBPP, where all region-to-

egion connectivity values were used in one prediction model. As the

egression weights from whole-brain CBPP models are not directly in-

erpretably, the Haufe transformation ( Haufe et al. 2014 ) was applied to

ransform these regression weights into values which can be associated

ith the predictive power of the functional connectivity edges. In this

ay, we could use the Haufe transformed patterns of different cohorts

s prediction patterns of these whole-brain CBPP models. Both region-

ise and whole-brain prediction patterns in this case will be referred to
2 
s ‘within-dataset prediction patterns’ for assessing the ‘replicability of

rain prediction patterns’, as the patterns would be derived from, and

hus specific to, a single dataset. 

In addition, since prediction models trained on a specific dataset

ould be largely influenced by the idiosyncrasies of the dataset, its gen-

ralizability to a new dataset cannot be simply assumed. By training

rediction models in one dataset and testing on other datasets, we could

btain the ‘cross-dataset prediction patterns’ for assessing the ‘generaliz-

bility of prediction models’. If the within-dataset prediction pattern of

 psychometric variable was similar to cross-dataset prediction patterns

rained on the same data, we may infer that prediction models trained

n this dataset could potentially be generalized to other datasets for this

sychometric variable. 

Intelligence and personality are core domains in differential psy-

hology and hence in the study of interindividual variability in hu-

ans ( Humphreys and Revelle 1984 ; Deary et al. 2011 ). Not surpris-

ngly, among the most investigated psychometric variables in CBPP

tudies were fluid intelligence and personality traits. Using HCP-YA

ata and linear predictive models, the fluid intelligence and open-

ess scores were both commonly investigated and generally among

he best predicted psychometric variables; in particular, among the

ig Five personality traits, only openness was reported to be predicted

ith statistical significance ( Dubois et al. 2018a ). In that context, the

eported accuracies (Pearson correlation between predicted and ob-

erved scores) were in the range of 0.20 to 0.25 ( Smith et al. 2016 ;

oble et al. 2017 ; Dubois et al. 2018a ; Dubois et al. 2018b ; Li et al. 2019 ;

ervaiz et al. 2020 ; Wu et al. 2021 ; Kong et al. 2021 ). Furthermore, the

easure of fluid intelligence, as well as fluid cognition, could be related

o various intelligence quotient (IQ) measures in other datasets and the

penness trait from the Neuroticism/Extroversion/Openness Five Factor

nventory (NEO-FFI) inventory is a common measure in many datasets.

herefore, we selected these two measures as the best candidate psycho-

etric variables for our replicability and generalizability investigations.

Accordingly, we selected four healthy adult datasets in which both

uid cognition and openness measures were available: the HCP-YA, the

uman Connectome Project Aging (HCP-A), the Enhanced Nathan Kline

nstitute Rockland Sample (eNKI-RS) and the Brain Genomics Super-

truct Project (GSP) cohorts, providing opportunities to examine cohort

ifferences in terms of sample characteristics, image acquisition and psy-

hometric test implementation (see a summary in Table 1 and age distri-

ution plots in Fig. S1). We first assessed the replicability of brain pre-

iction patterns across these cohorts by producing the region-wise and

hole-brain (within-dataset) brain spatial prediction patterns for each

sychometric variable in each cohort. Then, we assessed the generaliz-

bility of prediction models for fluid cognition prediction by comparing

he within-dataset and cross-dataset prediction patterns. Based on these

rediction patterns, we demonstrated that a common set of brain re-

ions related to fluid intelligence could be identified. Finally, we will

iscuss the implication of our results for the field and future studies. 

. Materials and methods 

.1. Data and preprocessing 

The HCP-YA S1200 Release ( Van Essen et al. 2013 ) includes pheno-

ype and imaging data from over 1200 healthy young adults (aged 22 to

7), from families with twins and non-twin siblings. Imaging data were

cquired using a customized Siemens 3T Skyra. Each subject visited in

wo consecutive days, during each of which two resting-state runs were

cquired using different phase-encodings, left-right and right-left. Each

un is 1200 frames (14.4 min) in length, with a repetition time (TR) of

20 ms. All resting-state functional Magnetic Resonance Imaging (fMRI)

ata were 2mm isotropic. We only considered subjects with all four runs

ompleted (N = 931). All raw resting-state data were preprocessed by

he HCP Minimal Processing Pipelines ( Glasser et al. 2013 ), followed
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Table 1 

Summary of datasets used. 

HCP-YA ( Van Essen et al. 2013 ) HCP-A ( Bookheimer et al. 2019 ) eNKI-RS ( Nooner et al. 2012 ) GSP ( Holmes et al. 2015 ) 

Number of subjects (N) 931 601 (fluid cognition) 715 

(openness) 

970 (fluid cognition) 820 

(openness) 

867 

Age 28.81 ± 3.70 58.11 ± 13.88 39.70 ± 23.15 21.59 ± 2.84 

Gender 497 female, 434 male 329 female, 242 male 575 female, 389 male 500 female, 367 male 

Length of resting-state runs 14.4 min / 1200 frames 6 min / 488 frames 10 min / 900 frames 6 min / 120 frames 

Repetition time (TR) 720 ms 720 ms 645 ms 3000 ms 

Resolution of resting-state 

scans 

2mm isotropic 2mm isotropic 3mm isotropic 3mm isotropic 

Fluid cognition measures 1. fluid cognition composite score 

( CogFluidComp_AgeAdj ) 

2. fluid intelligence 

( PMAT24_A_CR ) 

fluid cognition composite score 

( nih_fluidcogcomp_ageadjusted ) 

Wechsler Abbreviated Scale of 

Intelligence (WASI-II; FSIQ – 4 

Composite Score ) 

Shipley IQ ( EstIQ_Matrix_Int_Bin ) 

Openness measures NEO-FFI openness ( NEOFAC_O ) NEO-FFI openness ( neo2_score_op ) NEO-FFI openness ( O T-Score ) NEO-FFI openness ( NEO_O ) 

Confounding variables Sex ( Gender ), age ( Age_in_Yrs ), 

age 2 , sex ∗ age, sex ∗ age 2 , 

handedness ( Handedness ), brain 

size ( FS_BrainSeg_Vol ), 

intracranial volume 

( FS_IntraCranial_Vol ), and 

acquisition quarter ( Acquisition ) 

Sex ( sex ), age ( interview_age ), 

age 2 , sex ∗ age, sex ∗ age 2 , 

handedness 

( hcp_handedness_score ), brain size 

( BrainSegVol ), intracranial 

volume 

( EstimatedTotalIntraCranialVol ) 

Sex (‘ What is your sex? ’), age 

( Calculated Age ), age 2 , sex ∗ age, 

sex ∗ age 2 , handedness 

( LATERALITY INDEX ), brain size 

( BrainSegVol) , intracranial 

volume 

( EstimatedTotalIntraCranialVol ) 

Sex ( Sex ), age ( Age_Bin ), age 2 , 

sex ∗ age, sex ∗ age 2 , handedness 

( Hand ), brain size ( BrainSegVol ), 

and intracranial volume ( ICV ) 
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y ICA-FIX denoising ( Smith et al. 2013 ; Griffanti et al. 2014 ; Salimi-

horshidi et al. 2014 ). 

The HCP-A Release 2.0 ( Harms et al. 2018 ; Bookheimer et al. 2019 )

ncludes phenotype and imaging data from 725 healthy adults (ages 36

o 100 + ), as an extension for the HCP-YA cohort. Imaging data were

cquired using a Siemens 3T Prisma. Similar to the HCP-YA cohort, two

esting-state sessions each with two runs were acquired for each subject,

sing anterior-posterior and posterior-anterior phase encoding, respec-

ively. Each run is 488 frames in length, with a TR of 720 ms. All resting-

tate fMRI data were 2 mm isotropic. We only considered subjects with

ll four runs completed (N = 720). All raw resting-state data were prepro-

essed by the HCP Minimal Processing Pipelines ( Glasser et al. 2013 ),

ollowed by ICA-FIX denoising ( Smith et al. 2013 ; Griffanti et al. 2014 ;

alimi-Khorshidi et al. 2014 ). 

The eNKI-RS ( Nooner et al. 2012 ) includes phenotype and imaging

ata from a lifespan sample of over 1000 participants (aged 6 to 85).

maging data were acquired using a Siemens 3T Tim Trio. We made use

f the fast repetition time (TR = 645 ms) resting-state scans each lasting

0 min (actual number of time point = 900) and with a resolution of

mm isotropic (N = 1309), which was anticipated to improve compari-

on with the HCP-YA data ( Nooner et al. 2012 ). We processed all raw

esting-state data with fMRIPrep ( Esteban et al. 2019 ) with default pa-

ameters and additionally ICA-AROMA denoising ( Pruim et al. 2015 a;

ruim et al. 2015 b); the details of the pipeline implementation can be

ound in Supplemental Materials. 

The GSP initial data release ( Holmes et al. 2015 ) includes phenotype

nd imaging data from young adults (aged 18 to 35; N = 867). Imaging

ata were acquired using matched Siemens 3T Tim Trio scanners at two

ites. The resting-state scans were 3mm isotropic, each with 120 frames

nd a TR of 3000 ms. These resting-state data were preprocessed with

n in-house pipeline, which includes fieldmap correction, motion cor-

ection, slice-time correction, spatial normalization to the MNI152 stan-

ard space and ICA-FIX denoising. 

For all four datasets, resting-state data in the MNI152 space were

sed. We applied nuisance regression to control for white matter signals,

erebrospinal fluid signals and their derivatives, as well as 24 motion pa-

ameters. As the HCP-YA and HCP-A datasets offer already preprocessed

ata, while the eNKI-RS and GSP data were preprocessed by us, we note

hat the data processing across the four cohorts may not be considered

omparable. However, this is in line with our aim to highlight potential

ssues of generalizability and replicability in practical scenarios, where

ata processing procedures can hardly be standardized. In particular, we

im to avoid situations in which a unique preprocessing pipeline would

e selected and could be optimal for one dataset, but not for the oth-
3 
rs. Accordingly, for the eNKI-RS and GSP datasets, preprocessing was

one in the way that was deemed optimal for the respective dataset so

hat data quality should remain comparable across cohorts despite the

ifference in preprocessing pipelines. 

In order to make sure that our results are not limited by the speci-

city of a single atlas, or a single granularity, we defined brain regions

sing parcels from two different atlases. We here selected the AICHA

tlas ( Fig. 1 A; Joliot et al. 2015 ) as an atlas that is independent from

he datasets used in this study and derived in a volumetric space. Addi-

ionally, we used a combination of the Schaefer cortical atlas and the 3T

ersion of Melbourne subcortex atlas ( Fig. 1 B —E; Schaefer et al. 2018 ;

ian et al. 2020 ) as extensively evaluated and used atlases. The Schaefer

ortical atlas and the Melbourne subcortex atlas were derived based on

he GSP cohort and the HCP-YA cohort, respectively, but were nonethe-

ess useful in offering different levels of granularity. The AICHA atlas

ontains 384 parcels encompassing both cortical and subcortical re-

ions. The Schaefer atlas and the Melbourne atlas were combined by the

evel of granularity. In other words, the 100-parcel Schaefer atlas was

ombined with the 16-parcel Melbourne atlas, the 200-parcel Schaefer

tlas with the 32-parcel Melbourne atlas, the 300-parcel Schaefer atlas

ith the 50-parcel Melbourne atlas, and the 400-parcel Schaefer atlas

ith the 54-parcel Melbourne atlas. This hence allows us to examine

he brain prediction patterns across 4 levels of granularity, with 116

arcels, 232 parcels, 350 parcels and 454 parcels, respectively. Within

ach parcel, the mean time series across all voxels inside the parcel was

omputed. The FC profile for each parcel was then obtained by comput-

ng the Pearson correlation between the mean time series between that

arcel and every other parcel. For the HCP-YA and HCP-A subjects, the

verage connectivity values across all four runs were used. 

.2. Psychometric variables 

Three psychometric variables were considered for the HCP-YA

ataset, namely the fluid intelligence measure, the fluid cognition com-

osite score and the NEO-FFI openness measure. Fluid intelligence was

easured using Form A of an abbreviated version of the Raven’s Progres-

ive Matrices ( Bilker et al. 2012 ). The Fluid cognition composite score

s an age-adjusted summary score, comprising the Dimensional Change

ard Sort Test for cognitive flexibility, the Flanker Inhibitory Control

nd Attention Test, the Picture Sequence Memory Test for non-verbal

pisodic memory, the List Sorting Working Memory Test, and the Pat-

ern Comparison Processing Speed Test. Lastly, the openness score was

ased on the 12 specific items from the revised 60-item version of the

EO-FFI ( McCrae and Costa 2004 ). 
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Fig. 1. (A) AICHA atlas. (B) 116-parcel Schaefer-Melbourne combined atlas. (C) 232-parcel Schaefer-Melbourne combined atlas. (D) 350-parcel Schaefer-Melbourne 

combined atlas. (D) 454-parcel Schaefer-Melbourne combined atlas. From left to right, the columns reflect: the lateral view of left hemisphere, the medial view of left 

hemisphere, the lateral view of right hemisphere, the medial view of right hemisphere, the superior view of subcortical regions, and the inferior view of subcortical 

regions. 
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For the HCP-A dataset, the fluid cognition composite score and the

EO-FFI openness measure were selected, both of which were estimated

n the same way as their counterpart in the HCP-YA dataset. As the

wo measures were only available in a subset of participants, we imple-

ented predictions for them separately using data from all participants

ith the respective measure (N = 623 for fluid cognition composite score,

 = 715 for openness). For the fluid cognition prediction, we further ex-

luded subjects whose score values were 999 (final N = 601). 

For the eNKI-RS dataset, two psychometric variables were consid-

red, the Wechsler Abbreviated Scale of Intelligence (WASI-II) measure

nd the NEO-FFI openness measure. The WASI is a general intelligence

est designed to assess specific and overall cognitive capabilities, consist-

ng of four subtests: vocabulary, block design, similarities, and matrix

easoning. Similar to HCP-YA, the openness measure was based on the

evised 60-item NEO-FFI ( McCrae and Costa 2004 ). As the NEO-FFI test

as done only in a subset of participants who went through the WASI-

I test, we implemented predictions for the two psychometric variables

eparately using data from all participants with the respective measure

N = 970 for WASI-II intelligence; N = 820 for openness). 

For the GSP dataset, two psychometric variables were considered,

he Shipley IQ measure and the NEO-FFI openness measure. The IQ

easure was estimated from Shipley-Hartford age-corrected t-scores,

hich showed strong relation to WASI derived IQ in a subset of subjects

 Holmes et al. 2015 ). The openness measure was based on the 60-item

EO-FFI ( Costa and McCrae 1992 ). 

In order to focus on brain-behavior relationships, the influence of de-

ographic factors, such as age and gender, need to be controlled. In our

revious work, we also showed that head size estimates could affect the

sychometric prediction profile of individual parcels ( Wu et al. 2021 ).

n line with our previous work and the HCP MegaTrawl analysis

 Smith et al. 2016 ), we considered a set of eight confounding variables
4 
or all samples: sex, age, age 2 , sex ∗ age, sex ∗ age 2 , handedness, brain size,

nd intracranial volume. For the HCP-YA sample, we additionally in-

luded acquisition quarter as a confounding variable. As the multiband

econstruction algorithm used was different in earlier quarters, control-

ing for the acquisition quarter helps to mitigate the effect of this change

n data collection protocol ( Dubois et al. 2018a ). 

.3. Whole-brain and region-wise connectivity-based psychometric 

rediction 

In line with the global trend in the field, the whole-brain CBPP model

ses all parcel-to-parcel connectivity values as input features for a linear

achine learning algorithm to predict the target psychometric variable.

n contrast, the region-wise model uses each parcel’s FC profile sepa-

ately. For instance, for a 300-parcel atlas, a subject’s input feature for

he whole-brain model is the upper triangular part of the FC matrix with

imensions of 300 × 300 , excluding the diagonal values, resulting in a fi-

al number of features of 44850. For the region-wise model, a subject’s

nput feature is the FC between the chosen region and all other regions,

ence resulting in 299 features for a 300-parcel atlas. 

For each model, the whole-brain FC matrices or parcel-wise FC pro-

les (the FC features) for all training subjects, as well as their psycho-

etric variable values, are provided to a machine learning algorithm. A

inear relationship is estimated between the FC features and the psycho-

etric variables by the algorithm. This linear relationship can then be

sed to infer psychometric variable values in new subjects, using their

C features. Finally, the inferred (or predicted) values are compared

ith the actual observed values in these new subjects, to evaluate the

rediction performance. 

The psychometric prediction was carried out with 100 repeats of 10-

old cross-validation. For each fold, subjects inside that fold are consid-
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red the test set, while the remaining nine folds are considered the train-

ng set. The prediction model is learnt using the training set data and

valuated using the test set data. During each repeat, every fold is used

s the test set fold once; such process is then repeated 100 times. For

ach test set fold, confounding variables were first regressed out from

he remaining nine training folds. The same regression coefficients were

sed to remove confounding effects from the test set fold. To account for

he family structure within the HCP-YA cohorts, family members were

lways kept within the same fold for the HCP-YA cohort. 

We applied support vector regression (SVR; Boser et al. 1992 ;

ortes and Vapnik 1995 ) using Matlab’s fitrlinear function. The hyper-

arameter determining the error tolerance during model fitting, epsilon,

as set to the default value which is dependent on data variance. Specifi-

ally, epsilon was set to 
𝐼𝑄𝑅 ( 𝑌 ) 
13 . 49 , where the numerator is the interquartile

ange of the target variable in the training set. In order to accommodate

he large feature space, especially in the whole-brain approach, ridge

enalty is included in the objective function for regularization. The reg-

larization strength, lambda, was also set to the default value of 1 
𝑛 
, the

nverse of the training sample size. For comparison’s sake, we also ap-

lied elastic net (EN; Zou and Hastie 2005 ) using the glmnet package

or Matlab ( Qian et al. 2013 ). For each fold, the hyperparameter alpha,

hich determines the compromise between ridge and lasso, was first

xed, while the hyperparameter lambda, which determines the degree

f regularization, was tuned with 10-fold inner-loop cross-validation us-

ng 8 of the training folds. The model with the best lambda was then

alidated on the last training fold, to determine the best value for al-

ha. 

Prediction accuracy was assessed by computing the Pearson corre-

ation between predicted and observed psychometric values, averaged

cross all test set folds and all repeats. For whole-brain approaches, this

eans that one accuracy value was computed for each atlas and each

sychometric variable in each cohort. For region-wise approaches, one

ccuracy value was computed for each parcel in each atlas, and for each

sychometric variable in each cohort. 

.4. Replicability of brain prediction patterns 

Interpreting the prediction patterns for the region-wise CBPP mod-

ls is straightforward. For each psychometric variable, we could visu-

lly or numerically compare the prediction accuracy distribution across

arcels ( Wu et al. 2021 ). The prediction accuracy achieved by each par-

el’s region-wise model can be related to the contribution of that par-

el’s connectivity with other parcels in the corresponding behavioral

unction. For each psychometric variable and each atlas, permutation

est was performed by shuffling the scores of the psychometric vari-

bles in 1000 repeats of 10-fold cross-validation (100 repeats for EN

ue to higher computational cost). Multiple comparisons across parcels

ere corrected using false discovery rate (FDR; Benjamini and Hochberg

995 ) of 𝑞 < 0 . 05 . 
The whole-brain CBPP models cannot be interpreted directly using

he regression weights assigned to each connectivity edge. Since SVR

and most other machine learning models often employed in prediction

tudies) is a backward model, interpreting the weights can be drasti-

ally misleading; large weights can be assigned to features unrelated

o the brain process of interest ( Haufe et al. 2014 ). To solve this issue,

he Haufe transformation ( Haufe et al. 2014 ) can be used to turn these

eights into weights of a corresponding forward model. These trans-

ormed weight values can then be related to the FC edge’s predictive

ower, where a larger absolute value would suggest that the FC edge

s more involved in the prediction of the target psychometric variable.

or each psychometric variable and each atlas, permutation test was

erformed by shuffling the scores of the psychometric variables during

he transformation, in 1000 repeats of 10-fold cross-validation. Mul-

iple comparisons across parcels were corrected using false discovery

ate (FDR; Benjamini and Hochberg 1995 ) of 𝑞 < 0 . 05 . Each set of trans-
5 
ormed weight values were then z-score normalized to have zero mean

nd unit variance. 

To numerically assess the cross-cohort replicability of brain predic-

ion patterns, the Pearson correlation coefficient was computed between

atterns derived for different psychometric variables for each atlas op-

ion. For the region-wise models, this means computing the correlation

etween the two arrays of parcel-specific prediction accuracies. For the

hole-brain models, this means computing the correlation between the

wo sets of Haufe transformed weight values. Between two psychometric

ariables, the replicability is indicated by the average Pearson correla-

ion value across different atlases. 

.5. Generalizability of prediction models 

In practice, replicability of prediction patterns would not suffice to

alidate a prediction model, as the model’s generalizability to novel data

ust be tested too. For any population level inference, the inference

eeds to be generalizable to other populations. Similarly, for clinical ap-

lications using machine learning, models trained on existing data need

o be generalizable to new patients. Focusing on the prediction patterns

erived from region-wise prediction models, we examined such cross-

ataset generalizability by training region-wise CBPP models based on

ach single dataset and testing the models on the other datasets. 

For the assessment of cross-dataset generalizability of prediction

odels, we focused on models where relatively higher prediction accu-

acies and consistent prediction patterns were observed across cohorts,

.e., the fluid cognition prediction for the HCP-YA, HCP-A, and eNKI-

S cohorts. Specifically, region-wise CBPP models were trained on the

C and psychometric data from one dataset and tested on the FC and

sychometric data from another. We refer to this as ‘cross-dataset pre-

ictions’. For each parcel in each atlas, one model was trained and evalu-

ted separately. Consequently, we obtained one accuracy value for each

arcel in each atlas for each test set (this is different from the repli-

ability case where accuracy values were averaged across test sets in

ross-validation). 

We then visualize the prediction patterns as prediction accuracy dis-

ribution maps, thus comparing them to the prediction patterns of mod-

ls trained and tested in the same dataset, which are referred to as

within-dataset predictions’. For numerical comparison, we computed

he Pearson correlation coefficients between cross-dataset and within-

ataset prediction patterns. The generalizability is indicated by the cor-

elation value between patterns derived from models trained and tested

n one dataset, and patterns derived from models trained in the same

ataset but tested in a different dataset (or models trained in a differ-

nt dataset but tested in the same dataset). In other words, for each

air of patterns, we computed the correlation between the two arrays

f parcel-specific prediction accuracies. 

.6. Data and code availability 

All data were managed via version-controlled DataLad datasets

 Halchenko, et al., 2021 ) that are either publicly available, or were pro-

ided by an institutional data management system when public sharing

as prevented by the terms of the respective data usage agreements. 

The HCP-YA imaging data were accessed via the public Data-

ad dataset provided at https://github.com/datalad-datasets/

uman- connectome- project- openaccess (2e2a8a70-3eaa-11ea-a9a5-

4969157768c@a33e528) which interfaces the HCP Open Access

ataset ( https://registry.opendata.aws/hcp-openaccess ) on AWS S3.

he unrestricted and restricted phenotype data were downloaded from

he ConnectomeDB ( https://db.humanconnectome.org ) after accepting

he Open Access Data User Terms and Restricted Access Data Use

erms, respectively. 

The HCP-A imaging and phenotype data were downloaded from

he NIMH Data Archive (NDA; https://nda.nih.gov ), after applying

https://github.com/datalad-datasets/human-connectome-project-openaccess
https://registry.opendata.aws/hcp-openaccess
https://db.humanconnectome.org
https://nda.nih.gov
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Fig. 2. Prediction accuracies (Pearson’s correlation between predicted and ob- 

served values) for each psychometric variable using the whole-brain model 

(white boxes) and best region-wise model (black boxes) with different atlases. 

For each psychometric variable and each atlas, only the region-wise model with 

the highest prediction accuracy (i.e., the best region-wise model) was included. 

Black bars inside the boxes represent the median accuracy value across different 

parcellations. 
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or the Data Use Certification. The associated study ID is 1376

 http://dx.doi.org/10.15154/1524254 ). 

The eNKI-RS imaging data were downloaded from the COINS data

xchange ( https://coins.trendscenter.org ). The phenotype data were

ownloaded after accepting the Data Usage Agreement. 

The GSP imaging and phenotype data were downloaded from the

ONI Imaging Data Archive ( https://ida.loni.usc.edu ) after accepting

he GSP Data Use Terms and GSP Restricted Data Use Terms. 

All codes are publicly available at https://github.com/inm7/cbpp . 

. Results 

Before investigating the brain patterns supporting the prediction of

ur selected psychometric variables, we first examined the global pre-

iction performance for these variables. We then examined the repli-

ability of brain prediction patterns based on the within-dataset brain

atterns related to the prediction of the two behavioral measures (intel-

igence and openness). This includes patterns obtained when using the

egion-wise CBPP model, as well as when using a whole-brain connectiv-

ty matrix with post-hoc evaluation of functional connectivity edges con-

ribution. The consistency of these brain patterns across datasets was ad-

ressed by computing correlation. Finally, in a generalizability perspec-

ive, we investigated the similarity of the cross-dataset brain patterns de-

ived from a region-wise CBPP when the model is trained on one dataset

nd tested in another dataset, in comparison to the within-dataset brain

atterns trained or tested using the same dataset. We would here ex-

ect that high similarity across different train-test datasets pairs reflect

 generalizable involvement or contribution of a set of regions for the

rediction of a given behavioral aspect. 

.1. Prediction performance for fluid intelligence and openness 

We first examine the whole-brain model performance and the best

egion-wise model performance for each psychometric variable ( Fig. 2 ).

ach box shows the distribution of prediction accuracies across the 5 dif-

erent atlases used. For each atlas, the best region-wise model represents

he highest prediction accuracy achieved by region-wise models using

hat atlas. Numerically, the best whole-brain model prediction accura-

ies were 𝑟 = 0 . 21 , 0 . 24 , 0 . 39 , 0 . 31 , 0 . 13 for HCP-YA fluid intelligence,

CP-YA fluid cognition, HCP-A fluid cognition, eNKI-RS WASI-II intelli-

ence and GSP Shipley IQ, respectively, while the best region-wise accu-

acies were 𝑟 = 0 . 20 , 0 . 25 , 0 . 30 , 0 . 25 , 0 . 14 . For the openness measure, the

est whole-brain accuracies were 𝑟 = 0 . 18 , 0 . 28 , 0 . 04 , 0 . 20 for HCP-YA,

CP-A, eNKI-RS and GSP, respectively, while the best region-wise accu-

acies were 𝑟 = 0 . 20 , 0 . 24 , 0 . 15 , 0 . 18 . With the exception of the GSP Ship-

ey IQ and eNKI-RS openness, most of the psychometric variables were

redicted with accuracies similar to existing studies ( Smith et al. 2016 ;

oble et al. 2017 ; Dubois et al. 2018a ; Dubois et al. 2018b ; Li et al. 2019 ;

ervaiz et al. 2020 ; Wu et al. 2021 ; Kong et al. 2021 ). 

.2. Region-wise CBPP patterns 

First, we present the prediction patterns for the region-wise CBPP

odels, shown as prediction accuracy distribution maps. Figs. 3 and 4

hows the prediction accuracy distribution maps for the fluid intelli-

ence and openness measures, respectively. When analyzing these pre-

iction patterns, we focus on the relative comparisons of prediction ac-

uracies between different parcels, for each psychometric variable sep-

rately. 

For the HCP-YA fluid intelligence measure, different prediction pat-

erns were observed when different parcellations were used. For predic-

ions using the AICHA atlas, better performing parcels were identified

n the left precuneus and right anterior cingulate cortex. For predictions

sing the Schaefer-Melbourne atlas, across granularities, better perform-

ng parcels were mostly in the left supramarginal gyrus, right temporal

ortex, and left and right precuneus. For the HCP-YA fluid cognition
6 
easure, better performing parcels were generally found in the left and

ight occipital lobe, left and right anterior insula, left and right anterior

nd posterior cingulate cortex, left and right supramarginal gyrus, and

ight prefrontal cortex. For the HCP-A fluid cognition measure, many

arcels achieved predictions accuracies of 𝑟 > 0 . 2 , spanning across the

refrontal cortex, cingulate cortex, lateral temporal lobe, occipital lobe,

upramarginal gyrus, precuneus, and anterior insula. For the eNKI-RS

ASI-II intelligence measure, the prediction patterns were rather sim-

lar to the patterns for the HCP-YA fluid cognition measure, with bet-

er performing parcels additionally identified in the right temporal lobe

nd left hippocampus body. For the GSP Shipley IQ measure, prediction

ccuracies were generally low across the brain. Overall, by visual in-

pection, some similarities can be observed between the HCP-YA fluid

ognition, HCP-A fluid cognition, and eNKI WASI-II intelligence mea-

ure. 

To validate the robustness of the prediction patterns for fluid cog-

ition, we derived the prediction patterns using EN as well (Fig. S2).

hile some differences could be observed between patterns using SVR

nd EN, we could identify the same sets of better performing parcels in

oth patterns for each fluid cognition measure. The similarity between

CP-YA fluid cognition, HCP-A fluid cognition, and eNKI WASI-II intel-

igence measure remains. Overall, we found the region-wise prediction

atterns consistent across the two regression algorithms used, SVR and

N. 

http://dx.doi.org/10.15154/1524254
https://coins.trendscenter.org
https://ida.loni.usc.edu
https://github.com/inm7/cbpp


J. Wu, J. Li, S.B. Eickhoff et al. NeuroImage 262 (2022) 119569 

Fig. 3. Prediction accuracy distribution maps of (A) HCP-YA fluid intelligence, (B) HCP-YA fluid cognition, (C) HCP-A fluid cognition, (D) eNKI-RS WASI-II in- 

telligence, and (E) GSP Shipley IQ. Within each section, each row shows the prediction accuracy distribution overlaid on a parcellation used in region-wise CBPP 

prediction, in lateral and medial views of the left and right cortical hemispheres, as well as the bottom and top views of the subcortical regions. Color represents 

the magnitude of the prediction accuracies (Pearson correlation between predicted and observed values). Accuracies below 0.05 and non-significant accuracies are 

shown in gray. 
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To validate the specificity of the prediction patterns for fluid cog-

ition, we also derived the prediction accuracy distribution maps for

he crystallized cognition composite score in the HCP-YA and HCP-A

ohorts (Fig. S3). For the HCP-YA fluid cognition and crystallized cog-

ition, better performing parcels were found in the left and right ante-

ior and posterior cingulate cortex, left and right supramarginal gyrus,

nd right prefrontal cortex, in both cases. However, some unique better

erforming parcels were also identified for fluid cognition and crystal-

ized cognition. For the HCP-A cohort, many parcels achieved prediction

ccuracies of 𝑟 > 0 . 2 for both fluid cognition and crystallized cognition.

Regarding the openness measures, first we note that the prediction

ccuracies were generally low for the eNKI-RS data. For the HCP-YA

nd GSP cohorts, the better performing parcels are few and sparse. Ac-

ordingly, very little similarity could be observed across datasets. For
7 
he HCP-YA openness measure, the relatively better performing parcels

ere found in the left and right prefrontal cortex, left and right anterior

nd posterior cingulate cortex, and left and right insula. For the HCP-A

penness measure, the relatively better performing parcels were found

n the left and right prefrontal cortex, right anterior cingulate cortex, left

nd right posterior cingulate cortex, left and right posterior temporal

obe, left and right temporal pole, and left and right precuneus. For GSP

penness measure, the relatively better performing parcels were found

n the left and right parietooccipital sulcus when using the AICHA atlas,

nd in the right ventral posterior temporal lobe when using the Schaefer-

elbourne atlas. Overall, little similarity was found across openness pre-

iction patterns from different cohorts. 

To quantitatively assess the similarity between the prediction pat-

erns, we computed the correlation between the prediction accuracy
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Fig. 4. Prediction accuracy distribution maps of (A) HCP-YA openness, (B) HCP-A openness, (C) eNKI-RS openness, and (D) GSP openness. Within each section, 

each row shows the prediction accuracy distribution overlaid on a parcellation used in region-wise CBPP prediction, in lateral and medial views of the left and right 

cortical hemispheres, as well as the bottom and top views of the subcortical regions. Color represents the magnitude of the prediction accuracies (Pearson correlation 

between predicted and observed values). Accuracies below 0.05 and non-significant accuracies are shown in gray. 
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istributions of each pair of psychometric variables, averaged across

ifferent parcellations ( Fig. 5 ). The correlation values were low to mod-

rate ( 𝑟 = 0 − 0 . 40 ). Relatively, the higher consistencies were found be-

ween the two HCP-YA fluid intelligence measures, between HCP-YA

nd HCP-A fluid cognition measures, between these two (HCP-YA and

CP-A fluid cognition measures) and eNKI-RS WASI-II intelligence, as

ell as between HCP-A fluid cognition and openness measures. Over-

ll, the highest similarity was found between HCP-YA and HCP-A fluid

ognition measures, which are also the two most similar fluid cognition

easures in terms of psychometric tools used. 

To summarize, using a region-wise CBPP approaches within each

ataset, a certain degree of replicability of the brain pattern was mainly

bserved for intelligence measures, while openness can hardly be pre-

icted in some datasets and show poor replicability of brain patterns

cross datasets. 

.3. Whole-brain CBPP patterns 

For the whole-brain CBPP models, we present the prediction pat-

erns derived using the Haufe transformation. Figs. 6 and 7 shows the

aufe transformed patterns for the fluid intelligence and openness mea-

ures, respectively. To avoid visual clutter, only the top 0.05% edges by

-score normalized absolute values for each psychometric variable and

ach parcellation were shown. Visual inspection showed that little simi-

arity could be found between Haufe transformed patterns between any

air of psychometric variables, or across different parcellations for the

rediction of the same psychometric variable. 

To quantitatively assess the similarity, or dissimilarity, between the

aufe transformed patterns, we computed the correlation between the

ctivation values of each pair of psychometric variables, averaged across
8 
ifferent parcellations ( Fig. 8 ). Very low similarity was found between

ny pair of psychometric variables, although a negative correlation was

ound between the activation values for GSP Shipley IQ measure and

hose for GSP openness measure. 

.4. Cross-dataset generalizability 

The prediction accuracy distribution maps for cross-dataset predic-

ions from the 3 pairs of datasets are shown in Fig. 9 (using the AICHA

tlas) and Fig. S4 (using the Schaefer-Melbourne atlases). The within-

ataset prediction patterns are shown in the diagonal spots for com-

arison. In general, the prediction accuracies in cross-dataset predic-

ions (with best region-wise prediction accuracies in the range 𝑟 = 0 . 17 −
 . 25 ) were lower compared to the within-dataset predictions (with best

egion-wise prediction accuracies in the range 𝑟 = 0 . 25 − 0 . 30 ). To facil-

tate comparison of patterns, the color scales were adjusted and hence

re different from those for within-dataset prediction patterns. 

For most cross-dataset prediction patterns, some similarity can be ob-

erved in comparison with the within-dataset prediction patterns using

he same test set. For the HCP-YA fluid cognition measure (i.e., using the

CP-YA data as test set), both cross-dataset and within-dataset models

 Fig. 9 top row) showed better performing parcels in the right anterior

nsula, left and right anterior cingulate cortex and right supramarginal

yrus. For the HCP-A fluid cognition measure (i.e. using the HCP-A data

s test set), both cross-dataset and within-dataset models ( Fig. 9 middle

ow) showed better performing parcels in the left lateral prefrontal cor-

ex, left and right cingulate cortex, left and right lateral temporal lobe,

eft and right supramarginal gyrus, left and right precuneus and left and

ight anterior insula. For the eNKI-RS WASI-II intelligence measure (i.e.,

sing the eNKI-RS data as test set), the cross dataset models trained on
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Fig. 5. Correlation between prediction accuracy distributions of each pair of psychometric variables, averaged across parcellation choices. 

Fig. 6. Haufe transformed patterns of HCP-YA fluid intelligence, HCP-YA fluid cognition, HCP-A fluid cognition, eNKI-RS WASI-II intelligence and GSP Shipley IQ, 

respectively. Each row shows the patterns for predictions using one specific parcellation. In each plot, only significant edges with the top 0.05% z-score normalized 

absolute values were shown, with positive edges shown in red and negative edges in blue. 

9 
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Fig. 7. Haufe transformed patterns of HCP-YA, HCP-A, eNKI-RS and GSP openness measures, respectively. Each row shows the patterns for predictions using one 

specific parcellation. In each plot, only significant edges with the top 0.05% z-score normalized absolute values were shown, with positive edges shown in red and 

negative edges in blue. 

Fig. 8. Correlation between Haufe trans- 

formed patterns of each pair of psychome- 

tric variables, averaged across parcellation 

choices. Colors were assigned based on the 

absolute correlation value, since the signs 

of the Haufe transformed values can be ar- 

bitrary. 

10 
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Fig. 9. Prediction accuracy distribution maps of within-dataset and cross-dataset predictions using the AICHA atlas, arranged according to the training set and test 

set involved. Each plot shows the prediction accuracy distribution overlaid on the AICHA atlas, in lateral and medial views of the left and right cortical hemispheres, 

as well as the bottom and top views of the subcortical regions. Color represents the magnitude of the prediction accuracies (Pearson correlation between predicted 

and observed values). Accuracies below 0.05 and non-significant accuracies are shown in gray. 
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CP-A data and the within-dataset models ( Fig. 9 bottom row, middle

nd rightmost columns) showed better performing parcels in left medial

refrontal cortex and right middle cingulate cortex. 

Fig. 10 shows the correlation between the prediction accuracy dis-

ributions of both within-dataset and cross-dataset predictions for these

uid intelligence measures. Overall, cross-dataset prediction patterns

ere still similar, to some extent, to the within-dataset prediction pat-

erns of each fluid intelligence measure, respectively. For most cross-

ataset prediction pattern, the correlation to the within-dataset predic-

ion pattern using the same test set is higher than the correlation to the

ithin-dataset prediction pattern using the same training set. Finally,

he cross-dataset prediction patterns are more similar to other cross-

ataset prediction patterns using the same pair of datasets than to any

ithin-dataset prediction pattern. For instance, the most similar pair of

rediction patterns are between the cross-dataset prediction patterns us-

ng the HCP-YA and HCP-A datasets, but swapping the training and test

et ( 𝑟 = 0 . 76 ). 
By evaluating region-wise CBPP models in out-of-sample test sets, a

ertain degree of generalizability of the prediction models could be ob-

erved ( 𝑟 = 0 . 13 − 0 . 52 ), especially when the brain prediction patterns

ere compared to the within-dataset patterns where the same test set

as used ( 𝑟 = 0 . 24 − 0 . 52 ). Notably, the highest similarity between pre-

iction patterns was observed when two models are trained and tested

n the same pair of datasets ( 𝑟 = 0 . 66 , 0 . 50 , 0 . 38 ). 

. Discussion 

To investigate the replicability of connectivity-based psychometric

rediction (CBPP) patterns across distinct population neuroscience co-

orts, we compared the prediction performance and prediction patterns
11 
ased on whole-brain and region-wise CBPP models for two psychome-

ric variables in four separate large datasets. Similar prediction accura-

ies can be achieved in most cases. However, low similarity in predic-

ion patterns was observed across datasets, illustrating the difficulty in

ross-cohort replicability of brain prediction patterns. Similarly, gener-

lizability of prediction models trained on one dataset to a new dataset

ould only be achieved to a low to moderate extent. In our examination

f replicability of prediction patterns, we noted higher similarity be-

ween the region-wise prediction patterns of the HCP-YA fluid cognition

easure, the HCP-A fluid cognition measure, and the eNKI-RS WASI-II

ntelligence measure, suggesting potential replicability for intelligence

easure. In addition, our analysis demonstrated the usefulness of the

egion-wise CBPP approach ( Wu et al. 2021 ) for comparing prediction

esults based on brain-behavior association patterns. Due to the inher-

nt low psychometric prediction accuracies based on RSFC, focusing on

 set of parcels with relatively higher prediction accuracies may be help-

ul for both the power and the generalizability of an analysis. 

.1. The HCP-YA cohort as an overoptimistic benchmark 

Many existing studies showed similar prediction accuracies in the

ange of 0.2 to 0.25 for fluid intelligence and the openness trait in the

CP-YA cohort ( Smith et al. 2016 ; Noble et al. 2017 ; Dubois et al. 2018a ;

ubois et al. 2018b ; Li et al. 2019 ; Pervaiz et al. 2020 ; Wu et al. 2021 ;

ong et al. 2021 ). However, our results demonstrated that similar accu-

acies should not be assumed to be achievable in other cohorts. As the

CP-YA dataset contains a large sample of high-quality imaging data

long scan durations, short TR and high resolution) which is often not

vailable in other datasets, it may not be advisable to use the accuracy

alues reported for the HCP-YA cohort as benchmarks for other cohorts.
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Fig. 10. Correlation between within-dataset and cross-dataset prediction patterns of HCP-YA fluid cognition, HCP-A fluid cognition, and eNKI-RS WAISI-II intelli- 

gence. Each box shows the Pearson’s correlation between one pair of prediction patterns, average across all 5 atlas options. 

B  

Y  

l  

s  

i  

a  

f  

m

4

o

 

l  

s  

b  

D  

M  

l  

E  

d  

o  

d  

m  

t  

(  

t  

s  

w

 

s  

A  

t  

r  

t  

p  

t  

T  

h  

t  

c  

P  

t  

h  

s  

(  

t  

S  

c  

t  

t  

d  
ecause the majority of existing CBPP studies made use of the HCP-

A cohort; the reported prediction accuracies from these studies may

ead to overoptimistic expectations of prediction performance for future

tudies. Such expectations may indirectly lead to some form of hack-

ng, in order to match such expectations, which in turn would maintain

nd further contribute to unrealistic expectations with regards to per-

ormance. We would hence here suggest that underperforming results

ay be reported in reference to the characteristics of the cohort(s). 

.2. Replicability of brain prediction patterns for fluid cognition and 

penness predictions 

Furthermore, similar prediction accuracies do not imply that simi-

ar interpretation can be made based on the prediction model. For in-

tance, while personality traits scores are generally thought to be sta-

le within individuals ( Murray et al. 2003 ; McCrae and Costa 2004 ;

ubois et al. 2018a ), the non-revised NEO-FFI openness score ( Costa and

cCrae 1992 ; used in the GSP cohort) may suffer from lower re-

iability and lack of congruency in distinct samples ( Caruso 2000 ;

gan et al. 2000 ). In our case, even though we achieved similar pre-

iction accuracies for HCP-YA openness, HCP-A openness and GSP

penness, we did not find similar prediction patterns between pre-

ictions of these three measures. In contrast, for the fluid cognition

easure, we have observed some similarity in prediction patterns be-

ween HCP-YA, HCP-A and eNKI-RS cohorts, with moderate correlations

 𝑟 = 0 . 31 − 0 . 35 ). Overall, our results suggested better replicability from
12 
est performance measures like fluid cognition than self-reported mea-

ures like openness, when different versions or types of measurement

ere used across cohorts. 

For fluid cognition prediction, for which some similarity was ob-

erved between the prediction patterns of HCP-YA fluid cognition, HCP-

 fluid cognition and eNKI-RS WASI-II intelligence, we demonstrated

hat a subset of the within-dataset prediction patterns could also be

eplicated with cross-dataset predictions. This convergence may reveal

he common brain regions related to fluid cognition, namely the right

refrontal cortex, the right anterior insula, left anterior cingulate cor-

ex and right supramarginal gyrus, when considering all three cohorts.

he prefrontal cortex, anterior cingulate cortex and supramarginal gyrus

ave been identified as neural correlates for fluid intelligence using

ask-based fMRI, possibly involved in attentional control, executive

ontrol, and visualization ( Kane and Engle 2002 ; Gray et al. 2003 ;

reusse et al. 2011 ; Ebisch et al. 2012 ; Santarnecchi et al. 2021 ). Fur-

hermore, the right prefrontal cortex and right inferior parietal cortex

ave been identified to be associated with fluid intelligence in lesion

tudies, possibly involved in working memory and spatial processing

 Roca et al. 2010 ; Barbey et al. 2013 ). All four regions have been iden-

ified as core functional hubs in network analyses ( van den Heuvel and

porns 2013 ), and hence may be related to efficiency of information pro-

essing in general. These regions were also observed to have higher in-

erindividual variability, with frequent reports of associations between

heir FC measures and individual differences across different cognitive

omains ( Mueller et al. 2012 ). Following these observations, it may be
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ecommended to focus on these key regions when the number of predic-

ive features has to be limited, not only specifically for fluid intelligence

rediction, but also for behavioral phenotype in general, as these regions

epresent crucial hub for which interindividual variability importantly

atters. 

.3. Generalizability of prediction models 

Many studies assessed the generalizability of their prediction mod-

ls by applying them to a new cohort ( Rosenberg et al. 2016 ;

eaty et al. 2018 ; Jiang et al. 2018 ; Avery et al. 2020 ; Jiang et al. 2020 ;

peer et al. 2022 ). In most cases, the generalizability of the developed

rediction model seems promising. However, our results suggest that the

eneralizability of models may be less optimistic when assessed using

he region-wise prediction patterns. 

Varying degree of similarity was observed between cross-dataset pre-

iction patterns and their corresponding within-dataset prediction pat-

erns ( 𝑟 = 0 . 16 − 0 . 53 ) in this study. Overall, the higher correlations and

isual similarity were observed between cross-dataset prediction pat-

erns and within-dataset prediction patterns using the same test set.

n contrast to our initial speculation, prediction patterns seem to de-

end more on the brain-behavior association in the test data than in

he training data. It is possible that, in cross-dataset predictions, the fi-

al prediction pattern indicates an overlap of the specific brain-behavior

ssociation patterns in the training set and those in the test set. As the fi-

al prediction pattern was generated in the test set, the brain-behavior

ssociation patterns specific to the test set may be more prominently

bserved, hence the higher similarity to the within-dataset prediction

attern generated using the same test set. Moreover, the highest simi-

arity was observed between cross-dataset prediction patterns using the

ame pair of datasets but swapping the training and test set. In this

ase, both prediction patterns would be relating to the overlap of spe-

ific brain-behavior association patterns in the same two sets of data,

ence the high similarity. Indeed, the most similar pair of cross-dataset

rediction patterns used the HCP-YA and the HCP-A datasets, where

ost similar data collection protocols were used, where more overlap

n brain-behavior association patterns may be expected. 

Finally, for both the reliability and generalizability analyses, our

ndings are mostly consistent across granularity, except at the 116-

arcel level where pattern similarities were generally lower (see Fig. S5).

hus, our results would tend to suggest that higher granularities ( ≥ 200)

ffer better representations of features for machine learning approaches,

n line with previous studies ( Arslan et al. 2018 ; Varikuti et al. 2018 ). 

.4. A possible effect of data collection and processing protocols on 

eliability and generalizability 

From our findings of the highest similarity between the cross-dataset

rediction patterns being observed for the HCP-YA and the HCP-A

atasets, we suggest that data collection and processing protocols may

e the most influential factor in cross-cohort replicability and gener-

lizability. It should be acknowledged, however, that comparison be-

ween different datasets is not straightforward, and that differences in

rediction accuracies or patterns could not attributed to any specific

actor with certainty. As this work is focused on assessing the extent

f replicability and generalizability of prediction patterns, our results

ere limited in finding the exact causes for the lack of replicability or

eneralizability. Future work with methods specifically designed would

e required to identify the actual causes. Potentially, several factors in-

uencing the prediction accuracies or patterns could be suggested for

urther investigation, including the differences in psychometric test im-

lementation, sample characteristics, imaging protocols and data qual-

ty across the different cohorts. 

For the GSP cohort, the shorter time series may have undermined

oth the prediction accuracies and interpretation based on prediction
13 
atterns. Scan duration and number of scans have been reported to in-

uence the reliability of RSFC ( Mueller et al. 2015 ; Shah et al. 2016 ;

oble et al. 2017 ; Noble et al. 2019 ), which could in turn affect the

redictive power of the derived FC features. A previous study has also

hown that prediction accuracies in GSP were lower than those in HCP-

A across multiple behavior phenotypes, not only for fluid cognition and

penness ( Li et al. 2019 ). Thus, altogether these findings may suggest

hat the length of the time series may play an important role in the re-

iability and validity of the connectivity-based prediction of behavioral

henotype in healthy populations. 

One potential factor not investigated in this work is the sam-

le size, which is less concerning when large open datasets and the

asy-to-acquire resting-state data are used. However, in studies us-

ng recruited subjects or task-based fMRI ( Beaty et al. 2018 ; Christov-

oore et al. 2020 ; Kwon et al. 2021 ; Speer et al. 2022 ), sample sizes tend

o be much smaller. Most self-recruited sample includes fewer than 100

ubjects and may suffer from shorter scan duration ( Yeung et al. 2022 ).

hile some task-based fMRI samples include more than 100 subjects,

he reproducibility of the analysis may still suffer if the amount of data

or each subject is insufficient ( Turner et al. 2018 ; Nee 2019 ). 

.5. Region-wise models for brain prediction pattern analysis and 

dentification of key predictive regions 

The prediction accuracy distribution maps based on region-wise

odels ( Wu et al. 2021 ) were particularly useful in our analysis, as it al-

ows comparisons to be made with direct reference to brain regions’ con-

ributions to the prediction of each psychometric variable. In contrast,

he Haufe transformed patterns were harder to interpret. As there was

ittle similarity between the Haufe transformed patterns from different

tlases or cohorts, we were not able to identify a representative pattern

or any psychometric variable based on the Haufe transformed weights.

t should be noted that how well the Haufe transformed patterns cap-

ured the true brain-behavior relationships is mostly dependent on the

ccuracy of the backward regression model ( Haufe et al. 2014 ). As the

art of variance in psychometric variables in healthy adult population

hat can be explained by interindividual variability in RSFC is limited,

he field of CBPP inherently suffers from low prediction performance.

herefore, the validity of the regression weights themselves, based on

odels with low predictive power, may be questionable, further limiting

nalyses relying on interpreting these weights. While it has been shown

hat the transformation improves the robustness of the weight patterns

n comparison to using regression weights directly ( Chen et al. 2022 ), it

as been also shown that the Haufe transformed weights themselves gen-

rally have poor reliability ( Tian and Zalesky 2021 ). Our results hence

onverge with previous findings by revealing the poor reliability of the

aufe transformed patterns. 

Several other studies have also investigated the replicability of fea-

ure importance under the framework of Connectome Predictive Mod-

lling (CPM). As the CPM process selects features most correlated with

he prediction target based on the training set, the group of selected

eatures can be considered a representation of prediction pattern too. A

attern consisting of features selected in all cross-validation splits can

e used to infer brain-behavior association pattern ( Jiang et al. 2018 ;

iang et al. 2020 ). Nevertheless, this feature selection has been shown

o be unstable even in the same dataset across cross-validation splits

 O’Connor et al. 2021 ). More research would be required to assess the

xtent to which these selected features can be related to the underlying

rain-behavior association. 

Despite the overall low prediction accuracies, the region-wise accu-

acy distribution maps allow researchers to easily identify and hence

ocus on the important regions for the psychometric variable in ques-

ion. From a general and technical perspective, the optimal number of

eatures for the highly correlated RSFC features in a dataset of 𝑁 sub-

ects would be 
√
𝑁 ( Jain and Waller 1978 ). As a result, studies with
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elatively small sample sizes, for instance, studies using clinical popula-

ion or locally acquired datasets have to select a low number of features.

his is usually done by focusing on canonical networks (such as the

efault mode network or the cognitive control network) derived from

ask-fMRI meta-analysis or RSFC network atlases ( Nostro et al. 2018 ;

hen et al. 2020 ; Plaeschke et al. 2020 ). Nevertheless, such approaches

re prone to neglecting potentially relevant regions because those where

ot highlighted in activation studies or not included in the selected RSFC

etwork. These regions may, nonetheless, be involved in information

rocessing and cognitive processes in general, or have high interindi-

idual variability in terms of the features used for prediction, such as

he three regions identified in our fluid cognition predictions. In this

ontext, the region-wise CBPP approach can help to select a set of key

egions in a data-driven fashion. 

Nonetheless, the utility of the region-wise CBPP approach for fea-

ure selection is dependent on, and limited by, the generalizability of

he region-wise prediction patterns. Key regions for predicting a psy-

hometric variable may be identified by selecting the better performing

rain regions in the prediction patterns. However, in order to use these

ey regions in the smaller sample of interest, the predictive model based

n these regions need to be generalizable to the new sample. Overall,

ur results suggested limited generalizability of region-wise prediction

atterns, although a small set of key regions did show decent generaliz-

bility. Therefore, the prediction patterns derived from the region-wise

pproach should be interpreted with caution. The key regions identified

ay serve as a general guidance to select the regions of interest, but not

lways applicable directly to new cohorts. 

It should be noted that the comparison between the Haufe transfor-

ation and the region-wise approach was only discussed in relation to

rain prediction pattern analysis. As our focus was on assessing the repli-

ability and generalizability of prediction patterns, we used the same lin-

ar model for all approaches to make them more comparable. Therefore,

ur results are not indicative of the predictive power of the region-wise

pproach or the whole-brain approach. In cases where the focus is on

aximizing prediction performance, the whole-brain approach should

e preferred. As demonstrated in our previous work ( Wu et al. 2021 ),

mplementing region-wise models in addition to the whole-brain model

an help to bring additional insights into the relevant brain-behavior

ssociation. As the whole-brain and region-wise approaches address dif-

erent objectives and applications of connectivity-based prediction, they

ppear as two complementary rather than competitive approaches for

he field. 

.6. Conclusion 

To conclude, we examined the convergence and divergence of

onnectivity-based psychometric prediction patterns across four distinct

opulation neuroscience cohorts. While similar prediction accuracies

ould be achieved for several fluid intelligence and NEO-FFI openness

easures across cohorts, the prediction patterns could not be replicated

cross cohorts in many cases. In the case where the prediction patterns

ere partly replicated for the prediction of fluid cognition across HCP-

A, HCP-A and eNKI-RS cohorts, we further demonstrated that some

xtent of cross-dataset generalizability could be achieved. Accordingly,

aking use of a region-wise CBPP approach, we revealed a set of com-

on brain regions potentially involved in fluid cognitive ability, hence

emonstrating that region-wise CBPP could provide regions of interest

n a data-driven way for future studies in smaller cohorts to focus on. In

iew of our results, we caution researchers to not be overoptimistic in

eplicating brain-behavior relationships discoveries in distinct cohorts.

hile many large population neuroimaging datasets are now available,

redictive models and the corresponding brain-behavior association pat-

erns identified based on such datasets could still only represent a small

ortion of the general population. Generalizing these models and pat-

erns to the general population may remain a challenge for a long

ime. 
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eclaration of Competing Interest 

There is no conflict of interest. 

redit authorship contribution statement 

Jianxiao Wu: Conceptualization, Methodology, Software, Valida-

ion, Formal analysis, Writing – original draft, Visualization. Jingwei

i: Software, Writing – review & editing. Simon B. Eickhoff: Writing –

eview & editing, Supervision, Funding acquisition. Felix Hoffstaedter:

ata curation, Writing – review & editing. Michael Hanke: Data cura-

ion, Writing – review & editing. B.T. Thomas Yeo: Writing – review &

diting. Sarah Genon: Conceptualization, Methodology, Writing – re-

iew & editing, Supervision, Funding acquisition. 

ata Availability 

The authors do not have permission to share data. 

cknowledgments 

This work was supported by the Deutsche Forschungsgemeinschaft

DFG, GE 2835/2–1 , EI 816/ 4–1 ), the Helmholtz Portfolio Theme ‘Su-

ercomputing and Modelling for the Human Brain’ and the European

nion’s Horizon 2020 Research and Innovation Programme under Grant

greement No. 720270 (HBP SGA1) and Grant Agreement No. 785907

HBP SGA2). SBE acknowledges funding by the European Union’s Hori-

on 2020 Research and Innovation Program (grant agreements 945539

HBP SGA3) and 826421 (VBC)), the Deutsche Forschungsgemeinschaft

DFG, SFB 1451 & IRTG 2150 ) and the National Institute of Health

 R01 MH074457 ). BTTY is supported by the Singapore National Re-

earch Foundation (NRF) Fellowship (Class of 2017), the NUS Yong Loo

in School of Medicine (NUHSRO/2020/124/TMR/LOA), the Singapore

ational Medical Research Council (NMRC) LCG (OFLCG19May-0035),

MRC STaR (STaR20nov-0003) and the USA NIH (R01MH120080). Any

pinions, findings and conclusions or recommendations expressed in

his material are those of the authors and do not reflect the views of

he Singapore NRF or the Singapore NMRC. For the HCP-YA cohort,

ata were provided by the Human Connectome Project, WU-Minn Con-

ortium (Principal Investigators: David Van Essen and Kamil Ugurbil;

U54MH091657) funded by the 16 NIH Institutes and Centers that sup-

ort the NIH Blueprint for Neuroscience Research; and by the McDonnell

enter for Systems Neuroscience at Washington University. For the HCP-

 cohort, research was supported by the National Institute On Aging of

he National Institutes of Health under Award Number U01AG052564.

https://registry.opendata.aws/hcp-openaccess
https://db.humanconnectome.org
https://nda.nih.gov
http://dx.doi.org/10.15154/1524254
https://ida.loni.usc.edu
https://github.com/inm7/cbpp
https://doi.org/10.13039/501100001659
https://doi.org/10.13039/501100001659
https://doi.org/10.13039/100000002


J. Wu, J. Li, S.B. Eickhoff et al. NeuroImage 262 (2022) 119569 

T  

s  

a  

t  

P  

(  

S  

m  

c  

i  

o  

D

S

 

t

R

A  

 

A  

 

 

B  

 

B  

 

 

B  

 

B  

 

B  

 

 

B  

 

C  

C  

 

 

C  

 

 

 

C  

 

 

C  

 

C  

C  

D  

 

 

D  

 

D  

 

E  

 

 

E  

 

E  

 

 

F  

 

 

G  

 

 

G  

G  

 

 

H  

 

 

H  

 

H  

 

 

 

H  

 

 

H  

 

 

H  

 

H  

 

J  

 

J  

 

J  

 

 

J  

 

 

K  

 

K  

 

 

K  

 

L  

 

 

M  

 

 

M  

M  

 

he content is solely the responsibility of the authors and does not neces-

arily represent the official views of the Ntional Institutes of Health. The

ssociated study ID is 1376 ( http://dx.doi.org/10.15154/1524254 ). For

he GSP cohort, data were provided by the Brain Genomics Superstruct

roject of Harvard University and the Massachusetts General Hospital

Principal Investigators: Randy Buckner, Joshua Roffman, and Jordan

moller), with support from the Center for Brain Science Neuroinfor-

atics Research Group, the Athinoula A. Martinos Center for Biomedi-

al Imaging, and the Center for Human Genetic Research. 20 individual

nvestigators at Harvard and MGH generously contributed data to the

verall project. The authors also thank Laura Waite for curation of the

ataLad datasets used in the work. 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.neuroimage.2022.119569 . 

eferences 

rslan, S., Ktena, S.I., Makropoulos, A., Robinson, E.C., Rueckert, D., Parisot, S., 2018. Hu-

man brain mapping: a systematic comparison of parcellation methods for the human

cerebral cortex. Neuroimage 170, 5–30. doi: 10.1016/j.neuroimage.2017.04.014 . 

very, E.W., Yoo, K., Rosenberg, M.D., Greene, A.S., Gao, S., Na, D.L., Scheinost, D., Con-

stable, T.R., Chun, M.M., 2020. Distributed patterns of functional connectivity predict

working memory performance in novel healthy and memory-impaired individuals. J.

Cogn. Neurosci. 32, 241–255. doi: 10.1162/jocn_a_01487 . 

arbey, A.K., Colom, R., Paul, E.J., Grafman, J., 2013. Architecture of fluid intelligence

and working memory revealed by lesion mapping. Brain Struct. Funct. 219, 485–494.

doi: 10.1007/s00429-013-0512-z . 

eaty, R.E., Kenett, Y.N., Christensen, A.P., Rosenberg, M.D., Benedek, M., Chen, Q.,

Fink, A., Qui, J., Kwapil, T.R., Kane, M.J., Silvia, P.J., 2018. Robust prediction of

individual creative ability from brain functional connectivity. Proc. Natl. Acad. Sci.

U. S. A. 115, 1087–1092. doi: 10.1073/pnas.1713532115 . 

enjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practi-

cal and powerful approach to multiple testing. J. R. Stat. Soc. 59, 289–300.

http://doi.wiley.com/10.1111/j.2517-6161.1995.tb02031.x . 

ilker, W.B., Hansen, J.A., Brensinger, C.M., Richard, J., Gur, R.E., Gur, R.C., 2012. Devel-

opment of abbreviated nine-item forms of the Raven’s standard progressive matrices

test. Assessment 19, 354–369. doi: 10.1177/1073191112446655 . 

ookheimer, S.Y., Salat, D.H., Terpstra, M., Ances, B.M., Barch, D.M., Buckner, R.L.,

Burgess, G.C., Curtiss, S.W., Diaz-Santos, M., Elam, J.S., et al., 2019. The lifes-

pan Human Connectome Project in aging: an overview. Neuroimage 185, 335–348.

doi: 10.1016/j.neuroimage.2018.10.009 . 

oser, E.B., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin

classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning

Theory, pp. 144–152. doi: 10.1145/130385.130401 . 

aruso, J.C., 2000. Reliability generalization of the NEO personality scales. Educ. Psychol.

Meas. 60, 236–254. doi: 10.1177/00131640021970484 . 

aspers, S., Moebus, S., Lux, S., Pundt, N., Schütz, H., Mühleisen, T.W., Gras, V., Eick-

hoff, S.B., Romanzetti, S., Stöcker, T., et al., 2014. Studying variability in human brain

aging in a population-based German cohort —rationale and design of 1000BRAINS.

Front. Aging Neurosci. 6, 149. doi: 10.3389/fnagi.2014.00149 . 

hen, J., Mueller, V.I., Dukart, J., Hoffstaedter, F., Baker, J.T., Holmes, A.J., Vatan-

sever, D., Nickl-Jockschat, T., Liu, X., Derntl, B., et al., 2020. Intrinsic connectiv-

ity patterns of task-defined brain networks allow individual prediction of cognitive

symptom dimension of schizophrenia and are linked to molecular architecture. Biol.

Psychiatry 89, 308–319. doi: 10.1016/j.biopsych.2020.09.024 . 

hen, J., Tam, A., Kebets, V., Orban, C., Ooi, L.Q.R., Asplund, C.L., Marek, S., Dosen-

bach, N.U.F., Eickhoff, S.B., Bzdok, D., Holmes, A.J., Yeo, B.T.T., 2022. Shared and

unique brain network features predict cognitive, personality, and mental health scores

in the ABCD study. Nat. Commun. 13, 2217. doi: 10.1038/s41467-022-29766-8 . 

hristov-Moore, L., Reggente, N., Douglas, P.K., Feusner, J.D., Iacoboni, M., 2020. Pre-

dicting empathy from resting state brain connectivity: a multivariate approach. Front.

Integr. Neurosci. 14, 3. doi: 10.3389/fnint.2020.00003 . 

ortes, C., Vapnik, V.N., 1995. Support-vector networks. Mach. Learn. 20, 273–297.

doi: 10.1007/BF00994018 . 

osta, P.T., McCrea, R.R., 1992. NEO PI-R professional manual. Psychol. Assess. 4, 5–13 .

eary, I.J., Weiss, A., Batty, D., 2011. Intelligence and personality as predictors of illness

and death: how researchers in differential psychology and chronic disease epidemi-

ology are collaborating to understand and address health inequalities. Psychol. Sci.

Public Interest 11, 53–79. doi: 10.1177/1529100610387081 . 

ubois, J., Galdi, P., Han, Y., Paul, L.K., Adolphs, R., 2018a. Resting-state functional brain

connectivity best predicts personality dimension of openness to experience. Personal.

Neurosci. 1, E6. doi: 10.1017/pen.2018.8 . 

ubois, J., Galdi, P., Paul, L.K., Adolphs, R., 2018b. A distributed brain network predicts

general intelligence from resting-state human neuroimaging data. Philos. Trans. R.

Soc. B Biol. Sci. 373, 20170284. doi: 10.1098/rstb.2017.0284 . 

bisch, S.J., Perrucci, M.G., Mercuri, P., Romanelli, R., Mantini, D., Romani, G.L.,

Colom, R., Saggino, A., 2012. Common and unique neuro-functional basis of induc-
15 
tion, visualization, and spatial relationships as cognitive components of fluid intelli-

gence. Neuroimage 62, 331–342. doi: 10.1016/j.neuroimage.2012.04.053 . 

gan, V., Deary, I., Austin, E., 2000. The NEO-FFI: emerging British norms and an item-

level analysis suggest N, A and C are more reliable than O and E. Personal. Individ.

Differ. 29, 907–920. doi: 10.1016/S0191-8869(99)00242-1 . 

steban, O., Markiewicz, C.J., Blair, R.W., Moodie, C.A., Isik, A.I., Erramuzpe, A.,

Kent, J.D., Goncalves, M., DuPre, E., Snyder, M., et al., 2019. fMRIPrep —a

robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116.

doi: 10.1038/s41592-018-0235-4 . 

inn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Papade-

metric, X., Constable, R.T., 2015. Functional connectome fingerprinting: identify-

ing individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671.

doi: 10.1038/nn.4135 . 

lasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L.,

Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., et al., 2013. The minimal pre-

processing pipeline for the Human Connectome Project. Neuroimage 80, 105–124.

doi: 10.1016/j.neuroimage.2013.04.127 . 

ray, J.R., Chabris, C.F., Braver, T.S., 2003. Neural mechanisms of general fluid intelli-

gence. Nat. Neurosci. 6, 316–322. doi: 10.1038/nn1014 . 

riffanti, L., Salimi-Khorshidi, G., Beckmann, C.F., Auerbach, E.J., Douaud, G., Sex-

ton, C.E., Zsoldos, E., Ebmeier, K.P., Filippini, N., Mackay, C.E., et al., 2014. ICA-based

artefact removal and accelerated fMRI acquisition for improved resting state network

imaging. Neuroimage 95, 232–247. doi: 10.1016/j.neuroimage.2014.03.034 . 

alchenko, Y.O., Meyer, K., Poldrack, B., Solanky, D.S., Wagner, A.S., Gors, J., MacFar-

lane, D., Pustina, D., Sochat, V., Ghosh, S.S., et al., 2021. DataLad: distributed system

for joint management of code, data, and their relationship. J. Open Source Softw. 6,

3262. https://joss.theoj.org/papers/10.21105/joss.03262 . 

aufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J., Blankertz, B., Bießmann, F.,

2014. On the interpretation of weight vectors of linear models in multivariate neu-

roimaging. Neuroimage 87, 96–110. doi: 10.1016/j.neuroimage.2013.10.067 . 

arms, M.P., Somerville, L.H., Ances, B.M., Andersson, J., Barch, D.M., Bas-

tiani, M., Bookheimer, S.Y., Brown, T.B., Buckner, R.L., Burgess, G.C., 2018.

Extending the Human Connectome Project across ages: imaging protocols

for the lifespan development and aging projects. Neuroimage 183, 972–984.

doi: 10.1016/j.neuroimage.2018.09.060 . 

e, T., Kong, R., Holmes, A.J., Nguyen, M., Sabuncu, M.R., Eickhoff, S.B., Bzdok, D.,

Feng, J., Yeo, B.T.T., 2020. Deep neural networks and kernel regression achieve com-

parable accuracies for functional connectivity prediction of behavior and demograph-

ics. Neuroimage 206, 116276. doi: 10.1016/j.neuroimage.2019.116276 . 

olmes, A.J., Hollinshead, M.O., O’Keefe, T.M., Petrov, V.I., Fariello, G.R., Wald, L.L.,

Fischl, B., Rosen, B.R., Mair, R.W., Roffman, J.L., et al., 2015. Brain Genomics Super-

struct Project initial data release with structural, functional, and behavioral measures.

Sci. Data 2, 150031. doi: 10.1038/sdata.2015.31 . 

orien, C., Greene, A.S., Constable, T., Scheinost, D., 2019. Regions and connections:

complementary approaches to characterize brain organization and function. Neuro-

scientist 26, 117–133. doi: 10.1177/1073858419860115 . 

umphreys, M.S., Revelle, W., 1984. Personality, motivation, and performance: a the-

ory for the relationship between individual differences and information processing.

Psychol. Rev. 91, 153–184. doi: 10.1037/0033-295X.91.2.153 . 

ain, A.K., Waller, W.G., 1978. On the optimal number of features in the

classification of multivariate Gaussian data. Pattern Recognit. 10, 365–374.

doi: 10.1016/0031-3203(78)90008-0 . 

iang, R., Calhoun, V.D., Zuo, N., Lin, D., Li, J., Fan, L., Qi, S., sun, H., Fu, Z., Song, M.,

et al., 2018. Connectome-based individualized prediction of temperament trait scores.

Neuroimage 183, 366–374. doi: 10.1016/j.neuroimage.2018.08.038 . 

iang, R., Calhoun, V., Fan, L., Zuo, N., Jung, R., Qi, S., Lin, D., Li, J., Zhuo, C., Song, M.,

2020. Gender differences in connectome-based predictions of individualized intelli-

gence quotient and sub-domain scores. Cereb. Cortex 30, 888–900. doi: 10.1093/cer-

cor/bhz134 . 

oliot, M., Jobard, G., Naveau, M., Delcroix, N., Petit, L., Zago, L., Crivello, F.,

Mellet, E., Mayzoyer, B., Tzourio-Mazoyer, N., 2015. AICHA: an atlas of in-

trinsic connectivity of homotopic areas. J. Neurosci. Methods 254, 46–59.

doi: 10.1016/j.jneumeth.2015.07.013 . 

ane, M.J., Engle, R.W., 2002. The role of prefrontal cortex in working-memory capacity,

executive attention, and general fluid intelligence: an individual-differences perspec-

tive. Psychon. Bull. Rev. 9, 637–671. doi: 10.3758/BF03196323 . 

ong, R., Yang, Q., Gordon, E., Xue, A., Yan, X., Orban, C., Zuo, X., Spreng, N.,

Ge, T., Holmes, A., et al., 2021. Individual-specific areal-level parcellations im-

prove functional connectivity prediction of behavior. Cereb. Cortex 31, 4477–4500.

doi: 10.1093/cercor/bhab101 . 

won, Y.H., Yoo, K., Nguyen, H., Jeong, Y., Chung, M.M., 2021. Predicting multilingual

effects on executive function and individual connectomes in children: an ABCD study.

Proc. Natl. Acad. Sci. U. S. A. 118, e2110811118. doi: 10.1073/pnas.2110811118 . 

i, J., Kong, R., Liegeois, R., Orban, C., Tan, Y., Sun, N., Holmes, A., Sabuncu, M.R.,

Ge, T., Yeo, B.T.T., 2019. Global signal regression strengthens association be-

tween resting-state functional connectivity and behavior. Neuroimage 196, 126–141.

doi: 10.1016/j.neuroimage.2019.04.016 . 

aglanoc, L.A., Kaufmann, T., van der Meer, D., Marquand, A.F., Wolfers, T., Jonassen, R.,

Hilland, E., Andreassen, O.A., Landrø, N.I., Westlye, L.T., 2019. Brain connectome

mapping of complex human traits and their polygenic architecture using machine

learning. Biol. Psychol. 87, 717–726. doi: 10.1016/j.biopsych.2019.10.011 . 

cCrae, R.R., Costa, P.T., 2004. A contemplated revision of the NEO Five-Factor Inven-

tory. Personal. Individ. Differ. 36, 587–596. doi: 10.1016/S0191-8869(03)00118-1 . 

ueller, S., Wang, D., Fox, M.D., Yeo, B.T.T., Sepulcre, J., Sabuncu, M.R., Shafee, R.,

Lu, J., Liu, H., 2012. Individual variability in functional connectivity architecture of

the human brain. Neuron 77, 586–595. doi: 10.1016/j.neuron.2012.12.028 . 

http://dx.doi.org/10.15154/1524254
https://doi.org/10.1016/j.neuroimage.2022.119569
https://doi.org/10.1016/j.neuroimage.2017.04.014
https://doi.org/10.1162/jocn_a_01487
https://doi.org/10.1007/s00429-013-0512-z
https://doi.org/10.1073/pnas.1713532115
http://doi.wiley.com/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1177/1073191112446655
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1145/130385.130401
https://doi.org/10.1177/00131640021970484
https://doi.org/10.3389/fnagi.2014.00149
https://doi.org/10.1016/j.biopsych.2020.09.024
https://doi.org/10.1038/s41467-022-29766-8
https://doi.org/10.3389/fnint.2020.00003
https://doi.org/10.1007/BF00994018
http://refhub.elsevier.com/S1053-8119(22)00684-X/sbref0015
https://doi.org/10.1177/1529100610387081
https://doi.org/10.1017/pen.2018.8
https://doi.org/10.1098/rstb.2017.0284
https://doi.org/10.1016/j.neuroimage.2012.04.053
https://doi.org/10.1016/S0191-8869(99)00242-1
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/nn.4135
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1038/nn1014
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://joss.theoj.org/papers/10.21105/joss.03262
https://doi.org/10.1016/j.neuroimage.2013.10.067
https://doi.org/10.1016/j.neuroimage.2018.09.060
https://doi.org/10.1016/j.neuroimage.2019.116276
https://doi.org/10.1038/sdata.2015.31
https://doi.org/10.1177/1073858419860115
https://doi.org/10.1037/0033-295X.91.2.153
https://doi.org/10.1016/0031-3203(78)90008-0
https://doi.org/10.1016/j.neuroimage.2018.08.038
https://doi.org/10.1093/cercor/bhz134
https://doi.org/10.1016/j.jneumeth.2015.07.013
https://doi.org/10.3758/BF03196323
https://doi.org/10.1093/cercor/bhab101
https://doi.org/10.1073/pnas.2110811118
https://doi.org/10.1016/j.neuroimage.2019.04.016
https://doi.org/10.1016/j.biopsych.2019.10.011
https://doi.org/10.1016/S0191-8869(03)00118-1
https://doi.org/10.1016/j.neuron.2012.12.028


J. Wu, J. Li, S.B. Eickhoff et al. NeuroImage 262 (2022) 119569 

M  

 

M  

N  

N  

 

N  

 

N  

 

 

N  

 

 

O  

 

P  

 

P  

 

 

P  

 

P  

 

P  

 

Q  

R  

 

R  

 

S  

 

S  

 

S  

 

 

S  

 

S  

 

 

S  

 

 

S  

 

S  

 

T  

 

T  

 

T  

 

v  

V  

 

V  

 

 

W  

 

Y  

 

Z  
ueller, S., Wang, D., Fox, M.D., Pan, R., Lu, J., Li, K., Sun, W., Buckner, R.L., Liu, H.,

2015. Reliability correction for functional connectivity: theory and implementation.

Hum. Brain Mapp. 36, 4664–4680. doi: 10.1002/hbm.22947 . 

urray, G., Rawlings, D., Allen, N.B., Trinder, J., 2003. NEO Five-Factor Inventory scores:

psychometric properties in a community sample. Meas. Eval. Couns. Dev. 36, 140–

149. doi: 10.1080/07481756.2003.11909738 . 

ee, D.E., 2019. fMRI replicability depends upon sufficient individual-level data. Com-

mun. Biol. 2, 130. doi: 10.1038/s42003-019-0378-6 . 

oble, S., Spann, M.N., Tokoglu, F., Shen, X., Constable, R.T., Scheinost, D., 2017. Influ-

ences on the test-retest reliability of functional connectivity MRI and its relationship

with behavioral utility. Cereb. Cortex 27, 5415–5429. doi: 10.1093/cercor/bhx230 . 

oble, S., Scheinost, D., Constable, R.T., 2019. A decade of test-retest reliability of func-

tional connectivity: a systematic review and meta-analysis. Neuroimage 203, 116157.

doi: 10.1016/j.neuroimage.2019.116157 . 

ooner, K.B., Colcombe, S.J., Tobe, R.H., Mennes, M., Benedict, M.M., Moreno, A.L.,

Panek, L.J., Brown, S., Zavitz, S.T., Li, Q., et al., 2012. The NKI-Rockland Sample:

a model for accelerating the pace of discovery science in psychiatry. Front. Neurosci.

6, 152. doi: 10.3389/fnins.2012.00152 . 

ostro, A.D., Mueller, V., Varikuti, D., Plaeschke, R., Hoffstaedter, F., Langner, R.,

Patil, K., Eickhoff, S.B., 2018. Predicting personality from network-based

resting-state functional connectivity. Brain Struct. Funct. 223, 2699–2719.

doi: 10.1007/s00429-018-1651-z . 

’Connor, D., Lake, E.M.R., Scheinost, D., Constable, R.T., 2021. Resample aggregating im-

proves the generalizability of Connectome Predictive Modelling. Neuroimage, 118044

doi: 10.1016/j.neuroimage.2021.118044 . 

ervaiz, U., Vidaurre, D., Woolrich, M.W., Smith, S.M., 2020. Optimis-

ing network modelling methods for fMRI. Neuroimage 221, 116604.

doi: 10.1016/j.neuroimage.2020.116604 . 

laeschke, R.N., Patil, K.R., Cieslik, E.C., Nostro, A.D., Varikuti, D.P., Plachti, A.,

Losche, P., Hoffstaedter, F., Langner, R., Eickhoff, S.B., 2020. Age differences in pre-

dicting working memory performance from network-based functional connectivity.

Cortex 132, 441–459. doi: 10.1016/j.cortex.2020.08.012 . 

reusse, F., van der Meer, E., Deshpande, G., Krueger, F., Wartenburger, I., 2011. Fluid

intelligence allows flexible recruitment of the parieto-frontal network in analogical

reasoning. Front. Hum. Neurosci. 5, 22. doi: 10.3389/fnhum.2011.00022 . 

ruim, R.H.R., Mennes, M., van Rooij, Daan, Llera, A., Buitelaar, J.K., Beckmann, C.F.,

2015. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from

fMRI data. Neuroimage 112, 267–277. doi: 10.1016/j.neuroimage.2015.02.064 . 

ruim, R.H.R., Mennes, M., Buitelaar, J.K., Beckmann, C.F., 2015. Evaluation of ICA-

AROMA and alternative strategies for motion artifact removal in resting state fMRI.

Neuroimage 112, 278–287. doi: 10.1016/j.neuroimage.2015.02.063 . 

ian, J., Hastie, T., Friedman, J., Tibshirani, R., Simon, N., 2013. Glmnet for Matlab.

http://www.stanford.edu/ ∼hastie/glmnet_matlab (last accessed 15 March 2019). 

osa, M., Parr, A., Thompson, R., Woolgar, A., Torralva, T., Antoun, N., Manes, F., Dun-

can, J., 2010. Executive function and fluid intelligence after frontal lobe lesions. Brain

133, 234–247. doi: 10.1093/brain/awp269 . 

osenberg, M.D., Finn, E.S., Scheinost, D., Papademetris, X., Shen, X., Constable, R.T.,

Chun, M.M., 2016. A neuromarker of sustained attention from whole-brain functional

connectivity. Nat. Neurosci. 19, 165–171. doi: 10.1038/nn.4179 . 

alimi-Khorshidi, G., Dounaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L.,

Smith, S.M., 2014. Automatic denoising of functional MRI data: combining indepen-

dent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–

468. doi: 10.1016/j.neuroimage.2013.11.046 . 
16 
antarnecchi, E., Momi, D., Mencarelli, L., Plessow, F., Saxena, S., Rossi, S., Rossi, A.,

Mathan, S., Pascual-Leone, A., 2021. Overlapping and dissociable brain activations

for fluid intelligence and executive functions. Cogn. Affect. Behav. Neurosci. 21, 327–

346. doi: 10.3758/s13415-021-00870-4 . 

chaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X., Holmes, A.J., Eickhoff, S.B.,

Yeo, B.T.T., 2018. Local-global parcellation of the human cerebral cortex from in-

trinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114. doi: 10.1093/cer-

cor/bhx179 . 

hah, L.M., Cramer, J.A., Ferguson, M.A., Birn, R.M., Anderson, J.S., 2016. Reliability and

reproducibility of individual differences in functional connectivity acquired during

task and resting state. Brain Behav. 6, e00456. doi: 10.1002/brb3.456 . 

mith, S.M., Beckmann, C.F., Andersson, J., Auerbach, E., Bijsterbosch, J., Dounaud, G.,

Duff, E., Feinberg, D.A., Griffanti, L., Harms, M.P., et al., 2013. Resting-

state fMRI in the Human Connectome Project. Neuroimage 80, 144–168.

doi: 10.1016/j.neuroimage.2013.05.039 . 

mith, S.M., Vidaurre, D., Glasser, M., Winkler, A., McCarthy, P., Robinson,

E., Chen, X., Horton, W., Jenkinson, M., Duff, E., et al., 2016. Second

beta-release oft he HCP functional connectivity MegaTrawl. Available at:

http://db.humanconnectome.org/megatraw (Accessed: 15 Mar 2019). 

peer, S.P.H., Smidts, A., Boksem, M.A.S., 2022. Individual differences in (dis)honesty are

represented in the brain’s functional connectivity at rest. Neuroimage 246, 118761.

doi: 10.1016/j.neuroimage.2021.118761 . 

ui, J., Jiang, R., Bustillo, J., Calhoun, V., 2020. Neuroimaging-based individualized pre-

diction of cognition and behavior for mental disorders and health: methods and

premises. Biol. Psychol. 88, 818–828. doi: 10.1016/j.biopsych.2020.02.016 . 

ian, Y., Margulies, D.S., Breakspear, M., Zalesky, A., 2020. Topographic organization of

the human subcortex unveiled with functional connectivity gradients. Nat. Neurosci.

23, 1421–1432. doi: 10.1038/s41593-020-00711-6 . 

ian, Y., Zalesky, A., 2021. Machine learning prediction of cognition from func-

tional connectivity: are feature weights reliable? Neuroimage 245, 118648.

doi: 10.1016/j.neuroimage.2021.118648 . 

urner, B.O., Paul, E.J., Miller, M.B., Barbey, A.K., 2018. Small sample sizes

reduce the replicability of task-based fMRI studies. Commun. Biol. 1, 62.

doi: 10.1038/s42003-018-0073-z . 

an den Heuvel, M.P., Sporns, O., 2013. Network hubs in the human brain. Trends Cogn.

Sci. 17, 683–696. doi: 10.1016/j.tics.2013.09.012 . 

an Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Con-

sortium, for the WU-Minn HCP, 2013. The WU-Minn Human Connectome Project: an

overview. Neuroimage 80, 62–79. doi: 10.1016/j.neuroimage.2013.05.041 . 

arikuti, D.P., Genon, S., Sotiras, A., Schwender, H., Hoffstaedter, F., Patil, K.R., Jock-

witz, C., Caspers, S., Moebus, S., Amunts, K., 2018. Evaluation of non-negative

matrix factorization of grey matter in age prediction. Neuroimage 173, 394–410.

doi: 10.1016/j.neuroimage.2018.03.007 . 

u, J., Eickhoff, S.B., Hoffstaedter, F., Patil, K.R., Schwender, H., Yeo, B.T.T., Genon, S.,

2021. A connectivity-based psychometric prediction framework for brain-behavior

relationship studies. Cereb. Cortex 31, 3732–3751. doi: 10.1093/cercor/bhab044 . 

eung, A.W.K., More, S., Wu, J., Eickhoff, S.B., 2022. Reporting details of neuroimag-

ing studies on individual traits prediction: a literature survey. Neuroimage 119275.

doi: 10.1016/j.neuroimage.2022.119275 . 

ou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. J. R.

Stat. Soc. 67, 301–320. http://doi.wiley.com/10.1111/j.1467-9868.2005.00503.x . 

https://doi.org/10.1002/hbm.22947
https://doi.org/10.1080/07481756.2003.11909738
https://doi.org/10.1038/s42003-019-0378-6
https://doi.org/10.1093/cercor/bhx230
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.3389/fnins.2012.00152
https://doi.org/10.1007/s00429-018-1651-z
https://doi.org/10.1016/j.neuroimage.2021.118044
https://doi.org/10.1016/j.neuroimage.2020.116604
https://doi.org/10.1016/j.cortex.2020.08.012
https://doi.org/10.3389/fnhum.2011.00022
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1016/j.neuroimage.2015.02.063
http://www.stanford.edu/~hastie/glmnet_matlab
https://doi.org/10.1093/brain/awp269
https://doi.org/10.1038/nn.4179
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.3758/s13415-021-00870-4
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1002/brb3.456
https://doi.org/10.1016/j.neuroimage.2013.05.039
http://db.humanconnectome.org/megatraw
https://doi.org/10.1016/j.neuroimage.2021.118761
https://doi.org/10.1016/j.biopsych.2020.02.016
https://doi.org/10.1038/s41593-020-00711-6
https://doi.org/10.1016/j.neuroimage.2021.118648
https://doi.org/10.1038/s42003-018-0073-z
https://doi.org/10.1016/j.tics.2013.09.012
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1016/j.neuroimage.2018.03.007
https://doi.org/10.1093/cercor/bhab044
https://doi.org/10.1016/j.neuroimage.2022.119275
http://doi.wiley.com/10.1111/j.1467-9868.2005.00503.x

	Cross-cohort replicability and generalizability of connectivity-based psychometric prediction patterns
	1 Introduction
	2 Materials and methods
	2.1 Data and preprocessing
	2.2 Psychometric variables
	2.3 Whole-brain and region-wise connectivity-based psychometric prediction
	2.4 Replicability of brain prediction patterns
	2.5 Generalizability of prediction models
	2.6 Data and code availability

	3 Results
	3.1 Prediction performance for fluid intelligence and openness
	3.2 Region-wise CBPP patterns
	3.3 Whole-brain CBPP patterns
	3.4 Cross-dataset generalizability

	4 Discussion
	4.1 The HCP-YA cohort as an overoptimistic benchmark
	4.2 Replicability of brain prediction patterns for fluid cognition and openness predictions
	4.3 Generalizability of prediction models
	4.4 A possible effect of data collection and processing protocols on reliability and generalizability
	4.5 Region-wise models for brain prediction pattern analysis and identification of key predictive regions
	4.6 Conclusion

	Data and code availability
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgments
	Supplementary materials
	References


