000909285 001__ 909285
000909285 005__ 20240712112826.0
000909285 0247_ $$2doi$$a10.1063/5.0075430
000909285 0247_ $$2Handle$$a2128/32905
000909285 0247_ $$2WOS$$aWOS:001098623400003
000909285 037__ $$aFZJ-2022-03099
000909285 082__ $$a540
000909285 1001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b0$$eCorresponding author
000909285 245__ $$aCharacterizing battery materials and electrodes via in situ / operando transmission electron microscopy
000909285 260__ $$a[Melville, NY]$$bAIP Publishing$$c2022
000909285 3367_ $$2DRIVER$$aarticle
000909285 3367_ $$2DataCite$$aOutput Types/Journal article
000909285 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669888072_19495
000909285 3367_ $$2BibTeX$$aARTICLE
000909285 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909285 3367_ $$00$$2EndNote$$aJournal Article
000909285 520__ $$aIn situ transmission electron microscopy (TEM) research has enabled better understanding of various battery chemistries (Li-ion, Li–S, metal–O2, Li, and Na metal based, etc.), which fueled substantial developments in battery technologies. In this review, we highlight some of the recent developments shedding new light on battery materials and electrochemistry via TEM. Studying battery electrode processes depending on the type of electrolytes used and the nature of electrode–electrolyte interfaces established upon battery cycling conditions is key to further adoption of battery technologies. To this end, in situ/operando TEM methodologies would require accommodating alongside correlation microscopy tools to predict battery interface evolution, reactivity, and stability, for which the use of x-ray computed tomography and image process via machine learning providing complementary information is highlighted. Such combined approaches have potential to translate TEM-based battery results into more direct macroscopic relevance for the optimization of real-world batteries.
000909285 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000909285 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x1
000909285 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x2
000909285 536__ $$0G:(EU-Grant)892916$$aElectroscopy - Electrochemistry of All-solid-state-battery Processes using Operando Electron Microscopy (892916)$$c892916$$fH2020-MSCA-IF-2019$$x3
000909285 588__ $$aDataset connected to DataCite
000909285 7001_ $$0P:(DE-Juel1)164430$$aDzieciol, Krzysztof$$b1
000909285 7001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b2
000909285 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b3
000909285 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b4
000909285 7001_ $$00000-0003-2906-6399$$aGeorge, Chandramohan$$b5
000909285 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6
000909285 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b7
000909285 773__ $$0PERI:(DE-600)3048928-3$$a10.1063/5.0075430$$gVol. 3, no. 3, p. 031303 -$$n3$$p031303-1 - 031303-21$$tChemical Physics Reviews$$v3$$x2688-4070$$y2022
000909285 8564_ $$uhttps://juser.fz-juelich.de/record/909285/files/Invoice_CPR21-RV-00088_00019.pdf
000909285 8564_ $$uhttps://juser.fz-juelich.de/record/909285/files/5.0075430.pdf$$yOpenAccess
000909285 8767_ $$8CPR21-RV-00088_00019$$92022-08-22$$a1200183761$$d2022-08-24$$eHybrid-OA$$jZahlung erfolgt$$zUSD 3500,-
000909285 909CO $$ooai:juser.fz-juelich.de:909285$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000909285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b0$$kFZJ
000909285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164430$$aForschungszentrum Jülich$$b1$$kFZJ
000909285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b2$$kFZJ
000909285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b3$$kFZJ
000909285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b4$$kFZJ
000909285 9101_ $$0I:(DE-HGF)0$$60000-0003-2906-6399$$aExternal Institute$$b5$$kExtern
000909285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b6$$kFZJ
000909285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b7$$kFZJ
000909285 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b7$$kRWTH
000909285 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000909285 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1
000909285 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x2
000909285 9141_ $$y2022
000909285 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909285 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909285 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-10
000909285 920__ $$lyes
000909285 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000909285 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000909285 9801_ $$aAPC
000909285 9801_ $$aFullTexts
000909285 980__ $$ajournal
000909285 980__ $$aVDB
000909285 980__ $$aUNRESTRICTED
000909285 980__ $$aI:(DE-Juel1)IEK-9-20110218
000909285 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000909285 980__ $$aAPC
000909285 981__ $$aI:(DE-Juel1)IET-1-20110218