000909326 001__ 909326 000909326 005__ 20230123110642.0 000909326 0247_ $$2doi$$a10.1038/s42254-022-00490-y 000909326 0247_ $$2Handle$$a2128/32009 000909326 0247_ $$2WOS$$aWOS:000843984200001 000909326 037__ $$aFZJ-2022-03125 000909326 082__ $$a530 000909326 1001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b0 000909326 245__ $$aRashba-like physics in condensed matter 000909326 260__ $$aLondon$$bSpringer Nature$$c2022 000909326 3367_ $$2DRIVER$$aarticle 000909326 3367_ $$2DataCite$$aOutput Types/Journal article 000909326 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1665063352_7692 000909326 3367_ $$2BibTeX$$aARTICLE 000909326 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000909326 3367_ $$00$$2EndNote$$aJournal Article 000909326 520__ $$aSpin–orbit coupling induces a unique form of Zeeman interaction in momentum space in materials that lack inversion symmetry: the electron’s spin is locked on an effective magnetic field that is odd in momentum. The resulting interconnection between the electron’s momentum and its spin leads to various effects such as electric dipole spin resonance, anisotropic spin relaxation and the Aharonov–Casher effect, but also to electrically driven and optically driven spin galvanic effects. Over the past 15 years, the emergence of topological materials has widened this research field by introducing complex forms of spin textures and orbital hybridization. The vast field of Rashba-like physics is now blooming, with great attention paid to non-equilibrium mechanisms such as spin-to-charge conversion, but also to nonlinear transport effects. This Review aims to offer an overview of recent progress in the development of condensed matter research that exploits the unique properties of spin–orbit coupling in non-centrosymmetric heterostructures. 000909326 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0 000909326 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000909326 7001_ $$0P:(DE-HGF)0$$aNoël, Paul$$b1 000909326 7001_ $$0P:(DE-HGF)0$$aVyalikh, Denis V.$$b2 000909326 7001_ $$0P:(DE-HGF)0$$aChulkov, Evgueni V.$$b3 000909326 7001_ $$00000-0002-4768-293X$$aManchon, Aurélien$$b4$$eCorresponding author 000909326 773__ $$0PERI:(DE-600)2947490-5$$a10.1038/s42254-022-00490-y$$p642–659$$tNature reviews$$v4$$x2522-5820$$y2022 000909326 8564_ $$uhttps://juser.fz-juelich.de/record/909326/files/s42254-022-00490-y.pdf 000909326 8564_ $$uhttps://juser.fz-juelich.de/record/909326/files/Rashba_Physics.pdf$$yPublished on 2022-08-24. Available in OpenAccess from 2023-02-24. 000909326 909CO $$ooai:juser.fz-juelich.de:909326$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000909326 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b0$$kFZJ 000909326 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 000909326 9141_ $$y2022 000909326 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000909326 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18 000909326 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18 000909326 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18 000909326 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18 000909326 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-18 000909326 920__ $$lyes 000909326 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0 000909326 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1 000909326 980__ $$ajournal 000909326 980__ $$aVDB 000909326 980__ $$aUNRESTRICTED 000909326 980__ $$aI:(DE-Juel1)PGI-1-20110106 000909326 980__ $$aI:(DE-Juel1)IAS-1-20090406 000909326 9801_ $$aFullTexts