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Abstract: The continuous, worldwide spread of multidrug-resistant (MDR) and extensively drug-
resistant (XDR) tuberculosis (TB) endanger the World Health Organization’s (WHO) goal to end
the global TB pandemic by the year 2035. During the past 50 years, very few new drugs have
been approved by medical agencies to treat drug-resistant TB. Therefore, the development of novel
antimycobacterial drug candidates to combat the threat of drug-resistant TB is urgent. In this
work, we developed and optimized a total synthesis of the antimycobacterial natural flavonoid
chlorflavonin by selective ruthenium(II)-catalyzed ortho-C(sp2)-H-hydroxylation of a substituted 3′-
methoxyflavonoid skeleton. We extended our methodology to synthesize a small compound library of
14 structural analogs. The new analogs were tested for their antimycobacterial in vitro activity against
Mycobacterium tuberculosis (Mtb) and their cytotoxicity against various human cell lines. The most
promising new analog bromflavonin exhibited improved antimycobacterial in vitro activity against
the virulent H37Rv strain of Mtb (Minimal Inhibitory Concentrations (MIC90) = 0.78 µm). In addition,
we determined the chemical and metabolic stability as well as the pKa values of chlorflavonin and
bromflavonin. Furthermore, we established a quantitative structure–activity relationship model
using a thermodynamic integration approach. Our computations may be used for suggesting further
structural changes to develop improved derivatives.

Keywords: Mycobacterium tuberculosis; natural product; flavonoid; acetohydroxyacid synthase in-
hibitor; ortho-C(sp2)-H-hydroxylation; 4H-chromen-4-one; chlorflavonin; antimycobacterial activity

1. Introduction

In 2020, the World Health Organization estimated that over two billion people were
infected with tuberculosis (TB) caused by the bacterial pathogen Mycobacterium tuberculosis
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(Mtb). The first-line therapy for drug-susceptible Mtb strains has remained unchanged for
50 years, despite a long treatment duration and, in part, severe side effects. During this
period, only three new anti-TB drugs with novel modes of action, bedaquiline, delamanid,
and pretomanid, have been clinically approved. However, these three drugs are only
approved for the treatment of multidrug-(MDR-) and extensively drug-resistant-(XDR-
)TB [1–3]. Therefore, there is a strong need for the development of novel lead structures,
and (pre)clinical candidates with novel mechanisms of action for inclusion in novel drug
regimens that can contribute to shortening treatment and delaying resistance. The naturally
occurring flavonoid chlorflavonin (CF, Figure 1) was first isolated in 1969 from Aspergillus
candidus. CF’s antimycotic properties against, e.g., Aspergillus amstelodami und Paecilomyces
variotii were reported in the same year [4]. In 1970, the structure of CF was resolved [5].
Recently, Rehberg et al. discovered CF’s strong in vitro growth inhibition against virulent
Mtb H37Rv (MIC90 = 1.56 µM) and Mtb XDR clinical isolates. CF exhibited no cytotoxicity
against the human fetal lung fibroblast cell line MRC-5 and monocyte cell line THP-1. For
mono treatment with CF, a bacteriostatic effect was observed. In addition, CF demonstrated
synergistic efficacy with delamanid and the first-line anti-TB drug isoniazid, including
intracellular activity against infected human macrophages. CF specifically inhibits the large
catalytic subunit IlvB1 of the mycobacterial acetohydroxyacid synthase (AHAS), which is
the first common enzyme in the de novo biosynthetic pathway of essential branched-chain
amino acids (BCAA) and pantothenic acid [6–13]. The inhibition of the mycobacterial AHAS
through chlorflavonin causes combined auxotrophies of BCAA and pantothenic acid [14].
In addition, the treatment of Mtb-infected mice with the AHAS inhibitor sulfometuron
methyl, which is approved as a herbicide, led to a significantly reduced proliferation of
the pathogen in the host’s lungs [15]. In the context of vaccine research, it was shown
that BCAA-auxotrophic mutants of intracellular pathogens exhibited significantly reduced
virulence in vivo [16]. The fact that AHAS is present in Mtb but not in the human host
makes it a promising target for developing novel antituberculosis drugs [17].
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Figure 1. Structure and nomenclature of CF (1).

None of the currently approved TB drugs inhibit AHAS nor any enzyme in the BCAA
biosynthetic pathway [14]. CF’s novel mechanism of action, structure, and potent antimy-
cobacterial in vitro activity make it a promising lead structure for developing a new class of
anti-TB drugs. The eponymous chlorine substituent on the B-ring adjacent to the phenolic
hydroxyl group is particularly noteworthy and unusual for a flavonoid [18,19]. In 1980,
Tökés et al. described the only published synthesis of CF through an Allan–Robinson con-
densation of 2-(benzoyloxy)-3-chlorobenzoic anhydride (3) with a hydroxyacetophenone
derivative 4 in a total yield of only 0.79% over seven steps (Scheme 1A) [20].
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2. Results and Discussion
2.1. Synthesis of CF

In a first synthetic attempt, we tried to avoid the occasionally unfavorable Elbs per-
sulfate oxidation by using the 2′-hydroxyacetophenon 7 with the natural substitution
pattern of the A-ring [21]. Using this approach adapted from Tökés et al. [20], we planned
to circumvent the difficult selective methylation of the phenolic hydroxyl groups in the
7- and 8-position (Scheme 1A). While intermediate 6 was successfully synthesized, the
selective demethylation of 6 with BBr3 to provide 1-(2-hydroxy-3,4,6-trimethoxyphenyl)-2-
methoxyethan-1-one (7) in sufficient yield was not feasible (Scheme 1B, see Supplementary
Materials for details). In our second attempt, flavone 10 was synthesized by a Claisen–
Schmidt condensation of the substituted 2′-hydroxyacetophenon 8 and the salicylic alde-
hyde derivative 9, followed by oxidative cyclo-dehydration of the chalcone intermediate
with a catalytic amount of iodine in dimethyl sulfoxide (DMSO). Unfortunately, the oxi-
dation of flavone 10 with dimethyldioxirane (DMDO), oxone®, or tert-butylhydroperoxid
(TBHP) resulted in poor yields (Scheme 1C, see Supplementary Materials for details). To
introduce the important phenolic hydroxyl group of the A-ring immediately and to forego
selective demethylation in a separate step, the commonly used Algar–Flynn–Oyamada
(AFO) reaction was employed to build the flavonol skeleton. However, the substrate scope
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of the AFO reaction was limited due to the competing formation of aurones when using
substrates with electron-donating groups [21–23]. Based on this limitation, we planned to
generate the essential substitution pattern of the A-ring via a transition metal-catalyzed
ortho-C(sp2)-H-functionalization using the carbonyl oxygen of the 4-chromanone moiety
as the coordinating directing group in the last step (Scheme 2). Therefore, the synthesis
of the 3′-methoxyflavonol 16 should take place by methylation of the flavonol 15, which
can be synthesized in advance by Claisen–Schmidt condensation of the commercially
available starting materials 2 and 13. The oxidative ring closure of the chalcone interme-
diate should then be initiated with alkaline hydrogen peroxide in an ethanolic solution
in a sequential one-pot process. Starting from 3-chloro-2-hydroxybenzaldehyde (2), the
methoxymethyl ether (MOM) protecting group was introduced to the phenolic hydroxyl
group by nucleophilic substitution with chloromethyl methyl ether in the presence of
N,N-diisopropylethylamine (DIPEA) with an excellent yield of 97% (Scheme 3).
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Next, the resulting MOM-protected salicylaldehyde 12 was condensed with the com-
mercially available 2′-hydroxyacetophenone 13 by a base-mediated Claisen–Schmidt con-
densation in ethanolic solution. Afterward, hydrogen peroxide was added to initiate the
oxidative Algar–Flynn–Oyamada ring closure to provide flavonol 15 with a moderate yield
of 42% on a multigram scale. Effective cooling, a slow addition rate of hydrogen peroxide,
and sufficient dilution of the reaction mixture were critical for avoiding side products and
simplifying the purification process (Scheme 3). Next, the enolic hydroxyl group of flavonol
15 was methylated with iodomethane in the presence of Cs2CO3 in dimethylformamide
(DMF). The MOM protecting group of 3′-methoxyflavonol 16 was then removed by aci-
dolysis with methanolic hydrochloric acid at 50 ◦C to give the deprotected flavonoid 17
with a good yield. It was unnecessary to add a scavenger to deactivate in situ-generated
formaldehyde, since no significant side reactions were observed (Scheme 3).

In the final step, we studied the introduction of the essential phenolic hydroxyl
group in position 5 of the A-ring by a selective transition metal-catalyzed ortho-C(sp2)-
H-hydroxylation using the carbonyl oxygen of the 4H-chromen-4-one skeleton as a co-
ordinating directing group. In the last two decades, significant progress has been made
for C-H-functionalization [24–26], especially for substrates with weakly coordinating di-
recting groups such as the carbonyl oxygen of acetophenones and chromones [26–33]
An extensive catalyst, oxidant, solvent, and temperature screening was performed to
optimize our method. For this purpose, the conversion and selectivity of the ortho-C(sp2)-
H-hydroxylation were monitored by HPLC-UV/Vis (Table 1). Inspired by the work of Shan
et al. and others, we first studied palladium(II)-catalysts in combination with PhI(TFA)2
as the terminal oxidant in 1,2-dichlorethane (DCE) [34]. However, these reaction condi-
tions provided only trace amounts of CF, and in the case of longer reaction times and an
excess of oxidant, the substrate decomposed (entries 1–2). Replacing DCE with a mixture
of trifluoroacetic acid (TFA) and trifluoroacetic anhydride (TFAA) (9:1, v/v) resulted in
a higher conversion rate and moderate selectivity. Notably, reversing the solvent ratio
significantly increased conversion and improved selectivity (entries 3–4). By combining
[RuCl2(p-cymene)]2 as a catalyst and selectfluor as an oxidizing agent, the formation of
byproducts could be suppressed to such an extent that purification by silica gel chromatog-
raphy or recrystallization was successfully applied (entries 5–6). The addition of a silver(I)
additive was beneficial because of its role as a halogen scavenger. Silver-cations abstract
chloride from the neutral dimeric catalyst and form two monomeric, cationic catalyst
species, which can interact with the partially negatively charged oxygen in a stronger
fashion [29,35]. While an increased number of side reactions was observed with 2.0 equiva-
lents of the oxidizing agent, virtually no side reaction occurred with a slight stoichiometric
excess of 1.1 equivalents (entries 7–8). At the ideal reaction temperature of 80 ◦C, good
conversions and superior selectivity were achieved, while only trace amounts of 1 were
detected at 60 ◦C. In contrast, complete conversion of the starting material was observed at
120 ◦C, as well as the formation of several side products, necessitating purification with
RP-flash chromatography (entries 9–10). Furthermore, no significant increase in conversion
was observed when the reaction was carried out under argon atmosphere, nor with the
continuous addition of the oxidants or without separate previous activation of the cata-
lyst through the silver additive (see Supplementary Materials for complete optimization
studies). Initially, the ortho-C(sp2)-H-hydroxylation yielded the 2,2,2-trifluoroacetate inter-
mediate 18, which was converted into the desired product 1 through methanolysis. The
structure of chlorflavonin was elucidated via 1H-and 13C-NMR, which agrees with the
spectral data published and discussed by Rehberg et al. [14].
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Table 1. Optimization of ortho-C(sp2)-H-hydroxylation of 3′-methoxyflanonol 17.
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Entry a Catalyst Oxidant
(Equiv.)

Additive
(Equiv.)

Solvent
(0.07 M)

T
(◦C)

Time
(h)

Conversion
(%)

1 Pd(TFA)2 PhI(TFA)2 (1.2) - DCE 80 8 trace
2 Pd(TFA)2 PhI(TFA)2 (2.0) - DCE 80 16 decomp.
3 Pd(TFA)2 PhI(TFA)2 (1.2) - 9:1 TFA/TFAA 80 8 48
4 Pd(TFA)2 PhI(TFA)2 (1.2) - 1:66 TFA/TFAA b 80 8 52

5 [RuCl2(p-
cymene)]2

PhI(TFA)2 (1.5) Ag2CO3 (1.5) 1:66 TFA/TFAA b 80 24 43

6 [RuCl2(p-
cymene)]2

selectfluor (1.5) Ag2CO3 (1.5) 1:66 TFA/TFAA b 80 16 53

7 [RuCl2(p-
cymene)]2

selectfluor (2.0) Ag2CO3 (2.0) 1:66 TFA/TFAA b 80 16 61

8 [RuCl2(p-
cymene)]2

selectfluor (1.1) Ag2CO3 (2.0) 1:66 TFA/TFAA b 80 24 72

9 [RuCl2(p-
cymene)]2

selectfluor (1.5) Ag2CO3 (1.5) 1:66 TFA/TFAA b 60 16 trace

10 [RuCl2(p-
cymene)]2

selectfluor (1.2) Ag2CO3 (1.2) 1:66 TFA/TFAA b 120 2 74

a Reaction conditions: Flavone 8 (0.5 mmole, 1.0 equiv.), 5 mol% catalyst, 1.1–2.0 equiv oxidant, 1.2–2.0 equiv
additive. b 3.0 equiv. TFA were used.

2.2. Lead Optimization of CF

After establishing the optimal reaction conditions, we designed a small compound
library of CF analogs for preliminary structure–activity relationship (SAR) studies. Pre-
viously, we published a homology model of the Mtb H37Rv IlvB1 catalytic subunit of
AHAS using the Saccharomyces cerevisiae and Arabidopsis thaliana (PDB ID 1T9C and 1YBH)
AHAS proteins as templates [14]. Subsequent docking studies performed with Glide and
AutoDock identified potential interactions between CF and amino acid residues within
the putative active site of IlvB1, which provided a rational approach for the design of
the analogs. Therefore, in this first series of analogs, we focused on modifications to the
B-ring. Since the lipophilic chlorine substituent might interact with amino acid side chains
inside a hydrophobic side pocket, we replaced the chlorine substituent with bioisosteric
moieties and lipophilic substituents, e.g., Br and CF3 [14]. In addition, we wanted to
increase the acidity of the phenolic hydroxyl group of the B-ring to facilitate its deproto-
nation and strengthen the possible salt bridge to Lys197. To analyze the importance of
the 2′-hydroxy group, we replaced it with the bioisosteric difluoromethoxy group and
a chlorine or fluorine substituent [36–38]. The salicylic aldehyde starting materials and
several MOM-protected salicylic aldehydes were purchased or synthesized according to
the literature [39–45]. Analogs 17a–p were synthesized according to Scheme 3. For the
preparation of 1h, an additional step was needed. According to a procedure of Li et al. for
difluromethylation of phenols [46], the 2′-hydroxy group of intermediate 17b was treated
with aqueous KOH solution in dichloromethane. Dropwise addition of (bromodifluo-
rmethyl)trimethylsiliane as difluorocarbene precursor gave intermediate 19 with a yield of
78%. The final ortho-C(sp2)-H-hydroxylation of 17a–p afforded the CF analogs 1a–p with
yields of 6–53% (Scheme 4).
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The SAR for the B-ring was quite narrow, and even small structural changes resulted
in a loss of antimycobacterial activity. This activity loss was observed for the bioisosteric
replacement of the 2′-hydroxy group with potential bioisosteric groups (1f,g), the intro-
duction of a fluorine or a methyl substituent in the 5′-position of the B-ring (1h–j), and
the variation in the substitution pattern (1k–o). An explanation for the inactivity of these
analogs could be their poor water solubility. For a more comprehensive assessment of the
antimycobacterial activity, a better understanding of the biological functions of the different
mycobacterial AHAS isoenzymes is needed. For this purpose, we are currently developing
a new robust AHAS enzyme assay.

2.3. Evaluation of Selected Physicochemical Properties, Microsomal Stability, and Computations

For further preclinical profiling of CF and BF, selected physicochemical properties
(e.g., water solubility), chemical and microsomal metabolic stability were determined. The
aqueous solubility of both compounds was determined to be <5 µM at a pH of 7.4 using
a miniaturized shake-flask method (Table 2). While the chemical stability of CF and BF
in a phosphate buffer at pH 2.0 and 7.4 was excellent (99% drug content after 48 h), the
metabolic stability in human liver microsomes was moderate, and both compounds can be
classified as high extraction drugs (hepatic extraction ratio EH ≥ 0.72) (Table 2).

Table 2. Determination of physicochemical properties.

CF BF
Water solubility at pH 7.4 a <5 µM <5 µM

pKa1 (2′-OH) b

pKa2 (5-OH) b
6.80 ± 0.07

10.40 ± 0.03
6.74 ± 0.04

10.30 ± 0.04
remaining after 30 min c 48% 60%

CLint, app
d 76.3 mL/min/mg 53.4 mL/min/mg

EH
d 0.78 0.72

a 1 mg/mL compound was dissolved in phosphate buffer pH 7.4. The solubility was determined using the
shake-flask method and measured with HPLC at 254 nm after 4 and 24 h. b pKa values were determined by
1H-NMR titration. c The compounds were incubated at 1 µM in human liver microsomes (0.4 mg/mL) for 30 min
at 37 ◦C. The samples were analyzed by LC-MS/MS for the disappearance of the parent compound. d Predicted
in vivo intrinsic clearance (CLint, app) and hepatic extraction ratio (EH) were determined using standard equations
established by Di et al. and Obach et al. [47,48].

To investigate the protonation state of CF and BF in physiological media (pH = 7.4)
and these compounds’ ability to form the proposed salt bridge with Lys197, the pKa values
were determined by 1H-NMR titration (see Supplementary Data File; Figures S1–S4). For
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determination of the pKa of the 5-hydroxy group, the shift of the singlet at 6.65 ppm, the
triplet at 7.01 ppm for the 2′-hydroxyl group, and both double duplets at 7.42 and 7.59 ppm
were used.

Furthermore, seven structurally diverse chlorflavonin derivatives (1, 1a, 1b, 1c, 1d,
1f, 1i) with substitutions at the B-ring were chosen to establish a quantitative structure–
activity relationship model using the thermodynamic integration (TI) approach [49,50], as
implemented in FEW [51] of Amber21 (see Supplementary Materials Data File) [52]. The
computed relative free energies (∆∆G) were generally in qualitative agreement with the
changes in the minimal inhibitory concentrations (MIC90) (see Supplementary Materials
Data File; Figure S7). This suggests that changes in MIC90 were predominantly determined
by differences in the derivatives’ affinities. Furthermore, such computations may suggest
further structural changes to obtain more active chlorflavonin derivatives.

3. Materials and Methods
3.1. Chemistry

The syntheses of chlorflavonin and chlorflavonin analogs are described in detail in the
Supplementary Materials Data File. Commercially available reagents and solvents were
purchased from Apollo Scientific, Sigma-Aldrich, TCI, BLDpharm, Carbolution, ABCR
GmbH, Acros Organics, or Alfa Aesar and were used without further purification. Dry
solvents were purchased from Acros Organics. Analytical thin-layer chromatography was
performed using silica gel 60 F254 aluminium plates. Compound spots were visualized
either by UV light (254 nm) or by staining with a solution of 1% FeCl3 in ethanol. Flash
chromatography was performed on CombiFlash® Rf 200 using RediSep™ Rf-columns. 1H-,
13C-, and 19F-NMR spectra were recorded with Bruker Avance III—300, Bruker Avance III—
600, or Bruker Avance DRX—500 spectrometers. 1H- and 13C-NMR signals were calibrated
to the residual proton and carbon resonance of the solvent: CDCl3 (1H-NMR δ = 7.26 ppm,
13C-NMR δ = 77.2 ppm), DMSO (1H-NMR δ = 2.50 ppm, 13C-NMR δ = 39.5 ppm). The
following abbreviations were used to describe peak splitting patterns when appropriate:
s = singlet, d = doublet, t = triplet, q = quartet, h = hextet, m = multiplet, dd = doublet of
doublet, td = doublet of triplet, ddd = doublet of doublet of doublet and brs = broad singlet.
Coupling constants, J, were reported in the Hertz unit (Hz). ESI-MS data were recorded
with UHR-QTOF maXis 4G. Melting points were measured on a Büchi M 565 instrument
and were not corrected. Reverse-phase high-performance liquid chromatography data
were measured with Varian ProStar 210 with a Phenomenex Luna C-18 (2) particle size
5 µm (250 × 4.6 mm) column. The detection took place with the UV detector Varian ProStar
330 at 220–254 nm, and eluents water/acetonitrile with 0.1% TFA were used.

3.2. Determination of Minimal Inhibitory Concentration (MIC)

To characterize the structure–activity-relationship, the MIC assay was employed as
previously described. Briefly, M. tuberculosis H37Rv cells were precultured in Middlebrook
7H9 liquid medium supplemented with 0.5% (v/v) glycerol, 0.05% (v/v) tyloxapol, and 10%
(v/v) ADS (0.81% NaCl, 5% BSA and 2% dextrose) at 37 ◦C to an OD600 nm of 0.5–0.8. Cells
were diluted with fresh medium and seeded into 96-well plates to yield a final density
of 105 cells in 100 µL medium per well. The compounds were tested in two-fold serial
dilutions with a final concentration ranging from 100 to 0.05 µM. The microtiter plates were
incubated at 37 ◦C, 5% CO2, and 80% humidity for 5 days. Then 10 µL of a 100 µg/mL
resazurin solution were added to each well and incubated for 16 h at room temperature.
After fixation of the bacteria for 30 min with a final concentration of 5% (v/v) formalin, the
fluorescence was measured in a TECAN microplate reader (excitation of 540 nm, emission
of 590 nm). The percentage of growth was calculated in comparison to dimethyl sulfoxide
(DMSO)-treated cells (=100% growth) and the sterile control (=0% growth). All experiments
were performed in triplicates.



Pharmaceuticals 2022, 15, 984 9 of 14

3.3. Determination of Cytotoxcity

For the determination of the cytotoxicity of the compounds, different human cell
lines were used. The human fetal lung fibroblast cell line MRC-5 (American Type Culture
Collection) was incubated in Eagle’s Minimum Essential Medium (EMEM) containing 1%
(v/v) Na-pyruvate, whereas the human embryonic kidney cell line HEK-293 (CLS Cell Lines
Service GmbH) was cultivated in EMEM supplemented with 2 mM L-glutamine, 1% (v/v)
non-essential amino acids, and 1 mM sodium pyruvate. The human monocyte cell line
THP-1 (Deutsche Sammlung von Mikroogranismen und Zellkulturen GmbH) was cultured
in RPMI 1640 medium. All media were supplemented with 10% (v/v) heat-inactivated fetal
bovine serum (FBS).

The cell densities were quantified using a hemocytometer and then adjusted to
106 cells/mL. Next, 100 µL per well were seeded in 96-well microtiter plates to yield
an inoculation cell density of 5 × 105 cells per well. Compounds were added employing
two-fold serial dilutions resulting in final concentrations ranging from 100 to 0.78 µM.
Cells were incubated for two days at 37 ◦C and 5% CO2 in a humidified atmosphere.
Subsequently, 10 µL of a 100 µg/mL resazurin solution was added to each well, mixed
thoroughly, and incubated for an additional 3–4 h. Fluorescence was measured in a TECAN
microplate reader (excitation of 540 nm, emission of 590 nm). The percentage of growth was
calculated with respect to DMSO (100% growth) and Triton X-100 (0% growth) controls.

3.4. Evaluation of Solubility

Solubility was measured at pH 7.4 using an adapted miniaturized shake-flask method
in 96-well plate format [53,54]. Briefly, 4 µL of a 10 mM stock in DMSO was added to a
96-well plate and evaporated using a GeneVac® system. Phosphate buffer pH 7.4 was then
added to the wells, and the plate was incubated for 24 h at 25 ◦C with shaking. At the end
of this incubation, the samples were centrifuged at 3500 g for 15 min then transferred to an
analysis plate. A calibration curve in DMSO for each sample between 10 and 220 µM was
prepared and included in the analysis plate. Analysis was then performed by HPLC-DAD,
and the solubility of each sample was determined from the corresponding calibration curve.
Reserpine and hydrocortisone were used as positive controls and treated similarly.

3.5. Evaluation of Compound Chemical Stability

Stability testing was performed in phosphate buffer pH 2.0 and 7.4 (prepared according
to Ph. Eur. 10) at 20 ◦C over a period of 48 h. Therefore, 0.4 mg of substance was dissolved
in Tween® 20 und ethanol (7/3 v/v) and diluted with the respective phosphate buffer. The
solution was shaken with an IKA KS 260 basic (250 min−1) at 25 ◦C for 48 h. Analysis was
performed after 1, 3, 6, 24, and 48 h by comparing the area under the curve (A.U.C.), which
was measured with HPLC-UV at 254 nm (n = 1).

3.6. Evaluation of Compound Metabolic Stability

The metabolic stability assay was performed in Human Liver Microsomes (HLM)
using a single-point metabolic stability assay. Briefly, the compounds were incubated
at 1 µM in 0.4 mg/mL human mixed-gender liver microsomes (Xenotech, Kansas City,
KS, USA, pool of 50) for 30 min at 37 ◦C. Reactions were quenched by adding ice-cold
acetonitrile containing internal standard. The samples were then centrifuged and analyzed
by LC-MS/MS for the disappearance of the parent compound. Half-life, clearance, and
hepatic excretion ratios were determined using standard equations [47,48]. Propranolol
and midazolam were used as positive controls and treated similarly.

3.7. Determination of Compound pKa Values

NMR experiments were performed at 298 K on a Bruker Avance III HD spectrometer
operating at 600 MHz equipped with 5 mm triple resonance TCI (1H, 13C, 15N) cryoprobes
and shielded z-gradients. For the pKa value determination, 23 samples of 200 µM con-
centration of CF and BF were prepared with pH ranges from 2 to 13 (pH in 0.5 log unit
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steps) in 50 mM sodium phosphate, 100 mM sodium chloride, 10% (v/v) DMSO-d6. 1D
1H-NMR experiments were performed using 128 or 256 scans for each sample, and the
data were processed and analyzed by the TopSpin 3.2 software (TopSpin, v3.2, Bruker
BioSpin GmbH, Rheinstetten, Germany). Sodium 2,2-dimethyl-2-silapentane-5-sulfonate
(DSS) was used for chemical shift referencing. 1H chemical shift values were extracted
for the reporter protons using the TopSpin software (see Supplementary Materials Data
File Figures S1 and S3). The pKa values were calculated using the chemical shifts of the
protonated and unprotonated forms and their corresponding mole fraction values applying
the Henderson–Hasselbalch equation as explained by Gift et al. [55]. The data were plotted
with the Origin software (Origin Pro 2019, v9.6.0.172, OriginLab Corporation, Northampton,
MA, USA) (see Supplementary Data File Figures S2 and S4).

3.8. Analysis of a Quantitative Structure-Activity Relationship Model

Chlorflavonin derivates were prepared with the LigPrep module of the Schrödinger
suite [56] and subsequently aligned with align_ligands of the Schrödinger suite to chlor-
flavonin docked into the homology model of the catalytic subunit of human AHAS [14].
The homology model [14] was prepared for calculations with the Protein Preparation
Wizzard module of the Schrödinger suite. Files for relative free energy computations and
analyses were prepared with the TI module of FEW [51], and AMBER version 21.1 [52]
was used for simulations. The RESP charge model [57] was chosen for computing partial
charges of the ligands.

Ligands in water and ligand–protein complexes in water were minimized with a
three-step procedure, each with 2000 steps of steepest descent and 1000 steps of conjugate-
gradient minimization in the presence of 25 kcal mol−1 A−2, 5 kcal mol−1 A−2, and no
restraints on the solute, respectively. Subsequently, three replicas of each system were
heated from 100 K to 300 K in the NVT (constant temperature and constant volume)
ensemble during 50 ps of MD simulations followed by an adjustment of the density in the
NPT (constant temperature and constant pressure) ensemble during a 50 ps MD run.

The transition map was based on Kruskal’s algorithm [58] with a modification in-
troduced to close thermodynamic cycles for convergence control. As “cost” of the edges,
103 × (2—TanimotoCombo) was calculated, where the TanimotoCombo score was com-
puted with the ROCS module of OpenEye [56,59]. Production phase MD simulations were
carried out at 300 K in the NVT ensemble for 9 λ windows, λ = 0.1, 0.2, . . . , 0.9, respectively,
with lengths of 10 ns per λ window for ligands in solvent and 30 ns per λ window for
complexes in solvent. The impact of the simulation time per λ window (10 ns and 30 ns)
on the precision of the computations in the case of complex simulations was estimated
by calculating the standard deviation over three replicas (Figure S5). The convergence of
the computations was confirmed in three ways: First, the precision of average dV/dλ for
each λ window was determined by employing the Student’s distribution for each replica
separately as implemented in the FEW workflow (convergence_check_method 2) [51];
second, the average dV/dλ values were checked with respect to their consistency across
the three replicas (Figure S6); third, the cycle-closure hysteresis of closed thermodynamic
cycles was computed (Table S3).

3.9. Solubility and Partition Coefficient Predictions

QikProp [60] of the Schrödinger suite (version 6.7), Schrödinger, LLC, New York, NY,
USA, 2015 was used to compute the solubility (QPlogS) and octanol/water partition coeffi-
cient (QPlogPo/w) for chlorflavonin derivates included in relative free energy computations
(Table S4).

4. Conclusions

In conclusion, we developed an efficient five-step synthesis of the antimycobacterial
natural flavonoid chlorflavonin (1) and 14 structural analogs, demonstrating the broad
applicability of our method. The overall yield of CF (13.5%) was significantly improved
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compared to the original synthesis by Tökés et al. The SAR for the B-ring was surprisingly
narrow, as small structural changes resulted in a loss of antimycobacterial activity. We will
therefore extend the future optimization to rings A and C. The most active compound, BF,
exhibited submicromolar antimycobacterial activity with no cytotoxicity toward human
cells. The bromine substituent appeared to fill the proposed lipophilic sub-pocket ideally.
While the chemical stability of CF and BF was excellent, the metabolic stability needs im-
provement through future lead optimization. The initially derived SARs should encourage
and guide the synthesis of further analogs. For a successful and more comprehensive
structure optimization of CF and BF, we are currently developing a robust AHAS enzyme
assay. In addition, our quantitative structure-activity relationship model will be further
developed to effectively support this lead optimization program.

Supplementary Materials: The following Supplementary data files can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15080984/s1. References [55–61] are cited in the Supplementary
Materials. In this file, we describe the synthesis, characterization, and analysis of chlorflavonin 1
and chlorflavonin analogs 1a–n. Spectral copies of 1H-, 13C-, and 19F-NMR data of chlorflavonin
1 and chlorflavonin analogs 1a–n. Table S1. Literature for known compounds. Table S2. Reaction
optimization. Table S3. Relative free energy of binding calculated with the FEW free energy workflow.
All values of cycle closure hysteresis are below the threshold of chemical accuracy (1 kcal mol−1).
Figure S1: 1H-NMR-Spectra of chlorflavonin’s aromatic protons (6–8 ppm) at pH of 2.0–12.5. A–
D are the four aromatic protons. Chemical shift in ppm (parts per million). Figure S2: Titration
curves (chemical shift in 1H-NMR spectra vs. pH value) of chlorflavonin’s four aromatic protons
plotted with Origin software (OriginLab Corporation, Northampton, MA, USA). Figure S3: 1H-NMR-
Spectra of bromflavonin’s aromatic protons (6–8 ppm) at pH of 2.0–12.5. A–D are the four aromatic
protons. Chemical shift in ppm (parts per million). Figure S4: Titration curves (chemical shift in
1H-NMR spectra vs. pH value) of bromflavonin’s four aromatic protons plotted with Origin software
(OriginLab Corporation, Northampton, MA, USA). Table S4. Predicted solubility and octanol/water
partition coefficient computed with QikProp for chlorflavonin derivatives included in the relative
free energy computations. Figure S5. Average dV/dλ over three replicas of free energy calculations
of complexes with respect to the simulation time (10 ns per λ step and 30 ns per λ step). Error bars
denote the standard deviation from the three replicas. Figure S6. Ensemble-averaged dV/dλ after
10 ns per λ step (ligand in solvent) and 30 ns per λ step (complex in solvent) of sampling time for
transitions of chlorflavonin derivatives. The standard error of the mean in all cases was < 0.1 kcal
mol−1. Figure S7. Comparison of predicted relative free energy of binding (∆∆G predicted) with
the corresponding relative free energy of binding calculated from difference in minimal inhibitory
concentration (∆∆G calculated from MIC90) for the transitions V0→ V1 shown on the x-axis.
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