000909359 001__ 909359
000909359 005__ 20230126111311.0
000909359 0247_ $$2doi$$a10.1021/jacs.2c04699
000909359 0247_ $$2ISSN$$a0002-7863
000909359 0247_ $$2ISSN$$a1520-5126
000909359 0247_ $$2ISSN$$a1943-2984
000909359 0247_ $$2pmid$$a35917476
000909359 0247_ $$2WOS$$aWOS:000836234100001
000909359 037__ $$aFZJ-2022-03149
000909359 082__ $$a540
000909359 1001_ $$0P:(DE-HGF)0$$aBrown, Hawley$$b0
000909359 245__ $$aStructure-Based Design of Stapled Peptides That Bind GABARAP and Inhibit Autophagy
000909359 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2022
000909359 3367_ $$2DRIVER$$aarticle
000909359 3367_ $$2DataCite$$aOutput Types/Journal article
000909359 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674727902_22925
000909359 3367_ $$2BibTeX$$aARTICLE
000909359 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909359 3367_ $$00$$2EndNote$$aJournal Article
000909359 520__ $$aThe LC3/GABARAP family of proteins are involved in nearly every stage of autophagy. Inhibition of LC3/GABARAP proteins is a promising approach to blocking autophagy, which sensitizes advanced cancers to DNA-damaging chemotherapy. Here, we report the structure-based design of stapled peptides that inhibit GABARAP with nanomolar affinities. Small changes in staple structure produced stapled peptides with very different binding modes and functional differences in LC3/GABARAP paralog selectivity, ranging from highly GABARAP-specific to broad inhibition of both subfamilies. The stapled peptides exhibited considerable cytosolic penetration and resistance to biological degradation. They also reduced autophagic flux in cultured ovarian cancer cells and sensitized ovarian cancer cells to cisplatin. These small, potent stapled peptides represent promising autophagy-modulating compounds that can be developed as novel cancer therapeutics and novel mediators of targeted protein degradation.
000909359 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000909359 536__ $$0G:(GEPRIS)289554527$$aSFB 1208 B02 - Spezifische Rollen von Atg8s im Vesikeltransport (B02) (289554527)$$c289554527$$x1
000909359 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909359 7001_ $$0P:(DE-HGF)0$$aChung, Mia$$b1
000909359 7001_ $$0P:(DE-Juel1)181095$$aÜffing, Alina$$b2
000909359 7001_ $$0P:(DE-HGF)0$$aBatistatou, Nefeli$$b3
000909359 7001_ $$00000-0002-0398-8590$$aTsang, Tiffany$$b4
000909359 7001_ $$0P:(DE-HGF)0$$aDoskocil, Samantha$$b5
000909359 7001_ $$0P:(DE-HGF)0$$aMao, Weiqun$$b6
000909359 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b7
000909359 7001_ $$0P:(DE-HGF)0$$aBast, Robert C.$$b8
000909359 7001_ $$0P:(DE-HGF)0$$aLu, Zhen$$b9
000909359 7001_ $$0P:(DE-Juel1)131988$$aWeiergräber, Oliver H.$$b10
000909359 7001_ $$00000-0003-2878-6781$$aKritzer, Joshua A.$$b11$$eCorresponding author
000909359 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.2c04699$$gVol. 144, no. 32, p. 14687 - 14697$$n32$$p14687 - 14697$$tJournal of the American Chemical Society$$v144$$x0002-7863$$y2022
000909359 8564_ $$uhttps://juser.fz-juelich.de/record/909359/files/ja-2022-04699d.R3_Proof_hi.pdf$$yRestricted
000909359 909CO $$ooai:juser.fz-juelich.de:909359$$pVDB
000909359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181095$$aForschungszentrum Jülich$$b2$$kFZJ
000909359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b7$$kFZJ
000909359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131988$$aForschungszentrum Jülich$$b10$$kFZJ
000909359 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000909359 9141_ $$y2022
000909359 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-30
000909359 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000909359 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-30
000909359 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000909359 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000909359 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-09$$wger
000909359 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2021$$d2022-11-09
000909359 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000909359 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000909359 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000909359 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000909359 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000909359 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000909359 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000909359 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-09
000909359 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000909359 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bJ AM CHEM SOC : 2021$$d2022-11-09
000909359 920__ $$lyes
000909359 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000909359 980__ $$ajournal
000909359 980__ $$aVDB
000909359 980__ $$aI:(DE-Juel1)IBI-7-20200312
000909359 980__ $$aUNRESTRICTED