001     909359
005     20230126111311.0
024 7 _ |a 10.1021/jacs.2c04699
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a 35917476
|2 pmid
024 7 _ |a WOS:000836234100001
|2 WOS
037 _ _ |a FZJ-2022-03149
082 _ _ |a 540
100 1 _ |a Brown, Hawley
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Structure-Based Design of Stapled Peptides That Bind GABARAP and Inhibit Autophagy
260 _ _ |a Washington, DC
|c 2022
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674727902_22925
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The LC3/GABARAP family of proteins are involved in nearly every stage of autophagy. Inhibition of LC3/GABARAP proteins is a promising approach to blocking autophagy, which sensitizes advanced cancers to DNA-damaging chemotherapy. Here, we report the structure-based design of stapled peptides that inhibit GABARAP with nanomolar affinities. Small changes in staple structure produced stapled peptides with very different binding modes and functional differences in LC3/GABARAP paralog selectivity, ranging from highly GABARAP-specific to broad inhibition of both subfamilies. The stapled peptides exhibited considerable cytosolic penetration and resistance to biological degradation. They also reduced autophagic flux in cultured ovarian cancer cells and sensitized ovarian cancer cells to cisplatin. These small, potent stapled peptides represent promising autophagy-modulating compounds that can be developed as novel cancer therapeutics and novel mediators of targeted protein degradation.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
536 _ _ |a SFB 1208 B02 - Spezifische Rollen von Atg8s im Vesikeltransport (B02) (289554527)
|0 G:(GEPRIS)289554527
|c 289554527
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Chung, Mia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Üffing, Alina
|0 P:(DE-Juel1)181095
|b 2
700 1 _ |a Batistatou, Nefeli
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tsang, Tiffany
|0 0000-0002-0398-8590
|b 4
700 1 _ |a Doskocil, Samantha
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mao, Weiqun
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 7
700 1 _ |a Bast, Robert C.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lu, Zhen
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Weiergräber, Oliver H.
|0 P:(DE-Juel1)131988
|b 10
700 1 _ |a Kritzer, Joshua A.
|0 0000-0003-2878-6781
|b 11
|e Corresponding author
773 _ _ |a 10.1021/jacs.2c04699
|g Vol. 144, no. 32, p. 14687 - 14697
|0 PERI:(DE-600)1472210-0
|n 32
|p 14687 - 14697
|t Journal of the American Chemical Society
|v 144
|y 2022
|x 0002-7863
856 4 _ |u https://juser.fz-juelich.de/record/909359/files/ja-2022-04699d.R3_Proof_hi.pdf
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:909359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)181095
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131988
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J AM CHEM SOC : 2021
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21