Home > Publications database > Structure-Based Design of Stapled Peptides That Bind GABARAP and Inhibit Autophagy > print |
001 | 909359 | ||
005 | 20230126111311.0 | ||
024 | 7 | _ | |a 10.1021/jacs.2c04699 |2 doi |
024 | 7 | _ | |a 0002-7863 |2 ISSN |
024 | 7 | _ | |a 1520-5126 |2 ISSN |
024 | 7 | _ | |a 1943-2984 |2 ISSN |
024 | 7 | _ | |a 35917476 |2 pmid |
024 | 7 | _ | |a WOS:000836234100001 |2 WOS |
037 | _ | _ | |a FZJ-2022-03149 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Brown, Hawley |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Structure-Based Design of Stapled Peptides That Bind GABARAP and Inhibit Autophagy |
260 | _ | _ | |a Washington, DC |c 2022 |b American Chemical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674727902_22925 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The LC3/GABARAP family of proteins are involved in nearly every stage of autophagy. Inhibition of LC3/GABARAP proteins is a promising approach to blocking autophagy, which sensitizes advanced cancers to DNA-damaging chemotherapy. Here, we report the structure-based design of stapled peptides that inhibit GABARAP with nanomolar affinities. Small changes in staple structure produced stapled peptides with very different binding modes and functional differences in LC3/GABARAP paralog selectivity, ranging from highly GABARAP-specific to broad inhibition of both subfamilies. The stapled peptides exhibited considerable cytosolic penetration and resistance to biological degradation. They also reduced autophagic flux in cultured ovarian cancer cells and sensitized ovarian cancer cells to cisplatin. These small, potent stapled peptides represent promising autophagy-modulating compounds that can be developed as novel cancer therapeutics and novel mediators of targeted protein degradation. |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
536 | _ | _ | |a SFB 1208 B02 - Spezifische Rollen von Atg8s im Vesikeltransport (B02) (289554527) |0 G:(GEPRIS)289554527 |c 289554527 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Chung, Mia |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Üffing, Alina |0 P:(DE-Juel1)181095 |b 2 |
700 | 1 | _ | |a Batistatou, Nefeli |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Tsang, Tiffany |0 0000-0002-0398-8590 |b 4 |
700 | 1 | _ | |a Doskocil, Samantha |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Mao, Weiqun |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Willbold, Dieter |0 P:(DE-Juel1)132029 |b 7 |
700 | 1 | _ | |a Bast, Robert C. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Lu, Zhen |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Weiergräber, Oliver H. |0 P:(DE-Juel1)131988 |b 10 |
700 | 1 | _ | |a Kritzer, Joshua A. |0 0000-0003-2878-6781 |b 11 |e Corresponding author |
773 | _ | _ | |a 10.1021/jacs.2c04699 |g Vol. 144, no. 32, p. 14687 - 14697 |0 PERI:(DE-600)1472210-0 |n 32 |p 14687 - 14697 |t Journal of the American Chemical Society |v 144 |y 2022 |x 0002-7863 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/909359/files/ja-2022-04699d.R3_Proof_hi.pdf |y Restricted |
909 | C | O | |p VDB |o oai:juser.fz-juelich.de:909359 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)181095 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)132029 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)131988 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-09 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J AM CHEM SOC : 2021 |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-09 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-09 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b J AM CHEM SOC : 2021 |d 2022-11-09 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|