000909377 001__ 909377
000909377 005__ 20240712100945.0
000909377 0247_ $$2doi$$a10.5194/acp-22-9483-2022
000909377 0247_ $$2ISSN$$a1680-7316
000909377 0247_ $$2ISSN$$a1680-7324
000909377 0247_ $$2Handle$$a2128/31748
000909377 0247_ $$2WOS$$aWOS:000828630700001
000909377 037__ $$aFZJ-2022-03165
000909377 082__ $$a550
000909377 1001_ $$0P:(DE-HGF)0$$aHamryszczak, Zaneta T.$$b0$$eCorresponding author
000909377 245__ $$aDistribution of hydrogen peroxide over Europe during the BLUESKY aircraft campaign
000909377 260__ $$aKatlenburg-Lindau$$bEGU$$c2022
000909377 3367_ $$2DRIVER$$aarticle
000909377 3367_ $$2DataCite$$aOutput Types/Journal article
000909377 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661847083_16678
000909377 3367_ $$2BibTeX$$aARTICLE
000909377 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909377 3367_ $$00$$2EndNote$$aJournal Article
000909377 520__ $$aIn this work we present airborne in situ trace gas observations of hydrogen peroxide (H2O2) and the sum of organic hydroperoxides over Europe during the Chemistry of the Atmosphere – Field Experiments in Europe (CAFE-EU, also known as BLUESKY) aircraft campaign using a wet chemical monitoring system, the HYdrogen Peroxide and Higher Organic Peroxide (HYPHOP) monitor. The campaign took place in May–June 2020 over central and southern Europe with two additional flights dedicated to the North Atlantic flight corridor. Airborne measurements were performed on the High Altitude and LOng-range (HALO) research operating out of Oberpfaffenhofen (southern Germany). We report average mixing ratios for H2O2 of 0.32 ± 0.25, 0.39 ± 0.23 and 0.38 ± 0.21 ppbv in the upper and middle troposphere and the boundary layer over Europe, respectively. Vertical profiles of measured H2O2 reveal a significant decrease, in particular above the boundary layer, contrary to previous observations, most likely due to cloud scavenging and subsequent rainout of soluble species. In general, the expected inverted C-shaped vertical trend with maximum hydrogen peroxide mixing ratios at 3–7 km was not found during BLUESKY. This deviates from observations during previous airborne studies over Europe, i.e., 1.64 ± 0.83 ppbv during the HOOVER campaign and 1.67 ± 0.97 ppbv during UTOPIHAN-ACT II/III. Simulations with the global chemistry–transport model EMAC partly reproduce the strong effect of rainout loss on the vertical profile of H2O2. A sensitivity study without H2O2 scavenging performed using EMAC confirms the strong influence of clouds and precipitation scavenging on hydrogen peroxide concentrations. Differences between model simulations and observations are most likely due to difficulties in the simulation of wet scavenging processes due to the limited model resolution.
000909377 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000909377 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909377 7001_ $$00000-0003-2440-6104$$aPozzer, Andrea$$b1
000909377 7001_ $$00000-0002-7327-8893$$aObersteiner, Florian$$b2
000909377 7001_ $$0P:(DE-Juel1)2693$$aBohn, Birger$$b3
000909377 7001_ $$0P:(DE-HGF)0$$aSteil, Benedikt$$b4
000909377 7001_ $$00000-0001-6307-3846$$aLelieveld, Jos$$b5
000909377 7001_ $$0P:(DE-HGF)0$$aFischer, Horst$$b6$$eCorresponding author
000909377 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-22-9483-2022$$gVol. 22, no. 14, p. 9483 - 9497$$n14$$p9483 - 9497$$tAtmospheric chemistry and physics$$v22$$x1680-7316$$y2022
000909377 8564_ $$uhttps://juser.fz-juelich.de/record/909377/files/acp-22-9483-2022.pdf$$yOpenAccess
000909377 909CO $$ooai:juser.fz-juelich.de:909377$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b3$$kFZJ
000909377 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000909377 9141_ $$y2022
000909377 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000909377 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909377 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000909377 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000909377 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909377 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000909377 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000909377 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000909377 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-18T05:37:09Z
000909377 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-18T05:37:09Z
000909377 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-12-18T05:37:09Z
000909377 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000909377 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000909377 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-19
000909377 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000909377 9801_ $$aFullTexts
000909377 980__ $$ajournal
000909377 980__ $$aVDB
000909377 980__ $$aUNRESTRICTED
000909377 980__ $$aI:(DE-Juel1)IEK-8-20101013
000909377 981__ $$aI:(DE-Juel1)ICE-3-20101013