000909378 001__ 909378
000909378 005__ 20240712100945.0
000909378 0247_ $$2doi$$a10.5194/acp-22-8497-2022
000909378 0247_ $$2ISSN$$a1680-7316
000909378 0247_ $$2ISSN$$a1680-7324
000909378 0247_ $$2Handle$$a2128/31749
000909378 0247_ $$2WOS$$aWOS:000820334000001
000909378 037__ $$aFZJ-2022-03166
000909378 082__ $$a550
000909378 1001_ $$00000-0001-9472-8841$$aPang, Jacky Yat Sing$$b0
000909378 245__ $$aInvestigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber)
000909378 260__ $$aKatlenburg-Lindau$$bEGU$$c2022
000909378 3367_ $$2DRIVER$$aarticle
000909378 3367_ $$2DataCite$$aOutput Types/Journal article
000909378 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661847832_16678
000909378 3367_ $$2BibTeX$$aARTICLE
000909378 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909378 3367_ $$00$$2EndNote$$aJournal Article
000909378 520__ $$aThe oxidation of limonene by the hydroxyl (OH) radical and ozone (O3) was investigated in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) in experiments performed at different nitric oxide (NO) mixing ratios from nearly 0 up to 10 ppbv. For the experiments dominated by OH oxidation, the formaldehyde (HCHO) yield was experimentally determined and found to be (12 ± 3), (13 ± 3), and (32 ± 5) % for experiments with low (∼ 0.1 ppbv), medium (∼ 0.3 ppbv), and high NO (5 to 10 ppbv), respectively. The yield in an ozonolysis-only experiment was (10 ± 1) %, which agrees with previous laboratory studies. The experimental yield of the first-generation organic nitrates from limonene–OH oxidation is calculated as (34 ± 5) %, about 11 % higher than the value in the Master Chemical Mechanism (MCM), which is derived from structure–activity relationships (SARs). Time series of measured radicals, trace-gas concentrations, and OH reactivity are compared to results from zero-dimensional chemical box model calculations applying MCM v3.3.1. Modeled OH reactivity is 5 to 10 s−1 (25 % to 33 % of the OH reactivity at the start of the experiment) higher than measured values at the end of the experiments under all chemical conditions investigated, suggesting either that there are unaccounted loss processes of limonene oxidation products or that products are less reactive toward OH. In addition, model calculations underestimate measured hydroperoxyl radical (HO2) concentrations by 20 % to 90 % and overestimate organic peroxyl radical (RO2) concentrations by 50 % to 300 %. The largest deviations are found in low-NO experiments and in the ozonolysis experiment. An OH radical budget analysis, which uses only measured quantities, shows that the budget is closed in most of the experiments. A similar budget analysis for RO2 radicals suggests that an additional RO2 loss rate constant of about (1–6) × 10−2 s−1 for first-generation RO2 is required to match the measured RO2 concentrations in all experiments. Sensitivity model runs indicate that additional reactions converting RO2 to HO2 at a rate constant of about (1.7–3.0) × 10−2 s−1 would improve the model–measurement agreement of NOx, HO2, and RO2 concentrations and OH reactivity. Reaction pathways that could lead to the production of additional OH and HO2 are discussed, which include isomerization reactions of RO2 from the oxidation of limonene, different branching ratios for the reaction of RO2 with HO2, and a faster rate constant for RO2 recombination reactions. As the exact chemical mechanisms of the additional HO2 and OH sources could not be identified, further work needs to focus on quantifying organic product species and organic peroxy radicals from limonene oxidation.
000909378 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000909378 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909378 7001_ $$0P:(DE-Juel1)166537$$aNovelli, Anna$$b1
000909378 7001_ $$0P:(DE-Juel1)3039$$aKaminski, Martin$$b2
000909378 7001_ $$0P:(DE-Juel1)136889$$aAcir, Ismail-Hakki$$b3
000909378 7001_ $$0P:(DE-Juel1)2693$$aBohn, Birger$$b4
000909378 7001_ $$0P:(DE-Juel1)178087$$aCarlsson, Philip T. M.$$b5
000909378 7001_ $$0P:(DE-Juel1)174162$$aCho, Changmin$$b6
000909378 7001_ $$0P:(DE-Juel1)16317$$aDorn, Hans-Peter$$b7
000909378 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, Andreas$$b8
000909378 7001_ $$0P:(DE-Juel1)6775$$aLi, Xin$$b9$$ufzj
000909378 7001_ $$0P:(DE-Juel1)151242$$aLutz, Anna$$b10
000909378 7001_ $$0P:(DE-Juel1)7894$$aNehr, Sascha$$b11
000909378 7001_ $$0P:(DE-Juel1)171432$$aReimer, David$$b12$$ufzj
000909378 7001_ $$0P:(DE-Juel1)16347$$aRohrer, Franz$$b13$$ufzj
000909378 7001_ $$0P:(DE-Juel1)5344$$aTillmann, Ralf$$b14
000909378 7001_ $$0P:(DE-Juel1)2367$$aWegener, Robert$$b15
000909378 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b16
000909378 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b17
000909378 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b18$$eCorresponding author
000909378 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-22-8497-2022$$gVol. 22, no. 13, p. 8497 - 8527$$n13$$p8497 - 8527$$tAtmospheric chemistry and physics$$v22$$x1680-7316$$y2022
000909378 8564_ $$uhttps://juser.fz-juelich.de/record/909378/files/acp-22-8497-2022.pdf$$yOpenAccess
000909378 8767_ $$8102160$$d2022-09-21$$eAPC$$jZahlung erfolgt$$zOABLE
000909378 909CO $$ooai:juser.fz-juelich.de:909378$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166537$$aForschungszentrum Jülich$$b1$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b4$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178087$$aForschungszentrum Jülich$$b5$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174162$$aForschungszentrum Jülich$$b6$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16317$$aForschungszentrum Jülich$$b7$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich$$b8$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6775$$aForschungszentrum Jülich$$b9$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171432$$aForschungszentrum Jülich$$b12$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich$$b13$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b14$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2367$$aForschungszentrum Jülich$$b15$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b16$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b17$$kFZJ
000909378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b18$$kFZJ
000909378 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000909378 9141_ $$y2022
000909378 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000909378 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909378 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000909378 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000909378 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909378 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000909378 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000909378 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000909378 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-18T05:37:09Z
000909378 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-18T05:37:09Z
000909378 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-12-18T05:37:09Z
000909378 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000909378 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000909378 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-19
000909378 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000909378 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909378 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000909378 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000909378 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000909378 9801_ $$aFullTexts
000909378 980__ $$ajournal
000909378 980__ $$aVDB
000909378 980__ $$aUNRESTRICTED
000909378 980__ $$aI:(DE-Juel1)IEK-8-20101013
000909378 980__ $$aAPC
000909378 981__ $$aI:(DE-Juel1)ICE-3-20101013