000909448 001__ 909448
000909448 005__ 20240711085554.0
000909448 0247_ $$2doi$$a10.1039/D2TA00323F
000909448 0247_ $$2ISSN$$a2050-7488
000909448 0247_ $$2ISSN$$a2050-7496
000909448 0247_ $$2Handle$$a2128/31842
000909448 0247_ $$2WOS$$aWOS:000802322800001
000909448 037__ $$aFZJ-2022-03195
000909448 082__ $$a530
000909448 1001_ $$00000-0002-4410-5555$$aNeises, Julian$$b0$$eCorresponding author
000909448 245__ $$aStudy of thermal material properties for Ta- and Al-substituted Li 7 La 3 Zr 2 O 12 (LLZO) solid-state electrolyte in dependency of temperature and grain size
000909448 260__ $$aLondon $$bRSC$$c2022
000909448 3367_ $$2DRIVER$$aarticle
000909448 3367_ $$2DataCite$$aOutput Types/Journal article
000909448 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663130524_25138
000909448 3367_ $$2BibTeX$$aARTICLE
000909448 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909448 3367_ $$00$$2EndNote$$aJournal Article
000909448 520__ $$aSolid-state electrolytes such as tantalum (Ta)- and aluminum (Al)-substituted Li7La3Zr2O12 (LLZO) are seen as the key component for the next generation of mainstream battery technology. However, this development often lacks specific information on decisive material parameters. Therefore, this work experimentally investigates the thermal material parameters such as the thermal conductivity (κ) and the specific heat capacity (Cp) of LLZO between room temperature and 1225 K using laser flash analysis (LFA) and differential scanning calorimetry (DSC). The DSC measurements reveal a Cp of 0.55–0.80 J g−1 K−1. Furthermore, a decomposition of the cubic LLZO phase to pyrochlore La2Zr2O7 is detected between 1500 K and 1750 K, which is substantiated by Raman- and SEM-analysis. The impact of the grain size on κ is also considered, as the Al-substitution leads to the formation of significantly larger grain sizes compared to a Ta-substitution. The LFA measurements yield a relatively constant κ between 1.45–1.55 W m−1 K−1 for both materials and grain sizes, which is the consequence of a phonon mean free path in the range of the interatomic distance of the LLZO crystal. This implies that phonon scattering at grain boundaries is negligible and the main scattering occurs at inhomogeneities in the crystal lattice.
000909448 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000909448 536__ $$0G:(BMWi)03ETE016F$$aVerbundprojekt: OptiKeraLyt: Material- und Produktionsprozessoptimierung für Lithium-Ionen-Batterien mit keramischen Festkörperelektrolyten; Teilvorhaben: Synthese von keramischen Festkörperkomponenten (03ETE016F)$$c03ETE016F$$x1
000909448 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909448 7001_ $$0P:(DE-Juel1)178008$$aScheld, Walter Sebastian$$b1
000909448 7001_ $$0P:(DE-Juel1)177017$$aSeok, Ah-Ram$$b2$$ufzj
000909448 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b3
000909448 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b4
000909448 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b5
000909448 7001_ $$00000-0002-5976-4975$$aSchmechel, Roland$$b6
000909448 7001_ $$00000-0002-2632-4826$$aBenson, Niels$$b7$$eCorresponding author
000909448 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D2TA00323F$$gVol. 10, no. 22, p. 12177 - 12186$$n22$$p12177 - 12186$$tJournal of materials chemistry / A$$v10$$x2050-7488$$y2022
000909448 8564_ $$uhttps://juser.fz-juelich.de/record/909448/files/d2ta00323f.pdf$$yOpenAccess
000909448 909CO $$ooai:juser.fz-juelich.de:909448$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178008$$aForschungszentrum Jülich$$b1$$kFZJ
000909448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177017$$aForschungszentrum Jülich$$b2$$kFZJ
000909448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich$$b3$$kFZJ
000909448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b4$$kFZJ
000909448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b5$$kFZJ
000909448 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000909448 9141_ $$y2022
000909448 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000909448 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909448 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000909448 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000909448 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-09$$wger
000909448 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2021$$d2022-11-09
000909448 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000909448 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000909448 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000909448 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-09
000909448 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000909448 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000909448 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2021$$d2022-11-09
000909448 920__ $$lyes
000909448 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000909448 9801_ $$aFullTexts
000909448 980__ $$ajournal
000909448 980__ $$aVDB
000909448 980__ $$aUNRESTRICTED
000909448 980__ $$aI:(DE-Juel1)IEK-1-20101013
000909448 981__ $$aI:(DE-Juel1)IMD-2-20101013