000909513 001__ 909513
000909513 005__ 20230123110645.0
000909513 0247_ $$2doi$$a10.1016/j.epsr.2022.108489
000909513 0247_ $$2ISSN$$a0378-7796
000909513 0247_ $$2ISSN$$a1873-2046
000909513 0247_ $$2Handle$$a2128/31787
000909513 0247_ $$2WOS$$aWOS:000856623900017
000909513 037__ $$aFZJ-2022-03219
000909513 082__ $$a620
000909513 1001_ $$0P:(DE-Juel1)179250$$aKruse, Johannes$$b0$$eCorresponding author
000909513 245__ $$aSecondary control activation analysed and predicted with explainable AI
000909513 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000909513 3367_ $$2DRIVER$$aarticle
000909513 3367_ $$2DataCite$$aOutput Types/Journal article
000909513 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662364797_31566
000909513 3367_ $$2BibTeX$$aARTICLE
000909513 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909513 3367_ $$00$$2EndNote$$aJournal Article
000909513 520__ $$aThe transition to a renewable energy system challenges power grid operation and stability. Secondary control is key in restoring the power system to its reference following a disturbance. Underestimating the necessary control capacity may require emergency measures, such that a solid understanding of its predictability and driving factors is needed. Here, we establish an explainable machine learning model for the analysis of secondary control power in Germany. Training gradient boosted trees, we obtain an accurate ex-post description of control activation. Our explainable model demonstrates the strong impact of external drivers such as forecasting errors and the generation mix, while daily patterns in the reserve activation play a minor role. Training a prototypical forecasting model, we identify forecast error estimates as crucial to improve predictability. Generally, input data and model training have to be carefully adapted to serve the different purposes of either ex-post analysis or forecasting and reserve sizing.
000909513 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000909513 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x1
000909513 536__ $$0G:(BMBF)03EK3055B$$aVerbundvorhaben CoNDyNet2: Kollektive nichtlineare Dynamik komplexer Stromnetze (03EK3055B)$$c03EK3055B$$x2
000909513 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909513 7001_ $$00000-0003-1607-9748$$aSchäfer, Benjamin$$b1
000909513 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b2
000909513 773__ $$0PERI:(DE-600)1502242-0$$a10.1016/j.epsr.2022.108489$$gVol. 212, p. 108489 -$$p108489 -$$tElectric power systems research$$v212$$x0378-7796$$y2022
000909513 8564_ $$uhttps://juser.fz-juelich.de/record/909513/files/2109.04802.pdf$$yOpenAccess
000909513 909CO $$ooai:juser.fz-juelich.de:909513$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179250$$aForschungszentrum Jülich$$b0$$kFZJ
000909513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b2$$kFZJ
000909513 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000909513 9141_ $$y2022
000909513 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000909513 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909513 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000909513 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000909513 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-22
000909513 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000909513 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTR POW SYST RES : 2021$$d2022-11-22
000909513 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000909513 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-22
000909513 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-22
000909513 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-22
000909513 920__ $$lno
000909513 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000909513 980__ $$ajournal
000909513 980__ $$aVDB
000909513 980__ $$aUNRESTRICTED
000909513 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000909513 9801_ $$aFullTexts