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Germany

Frank Hellmann

Potsdam Institute for Climate Impact Research, Potsdam,
Germany†

Jürgen Kurths

Potsdam Institute for Climate Impact Research, Potsdam,
Germany†

Humboldt University Berlin, Berlin,
Germany
Lobachevsky University of Nizhny Novgorod,
Nizhnij Novgorod 603950,
Russia‡

Stefan Kettemann§

Department of Physics and Earth Sciences,
Department of Computer Science,
Jacobs University Bremen,
Campus Ring 1, 28759 Bremen,
Germany
Division of Advanced Materials Science,
POSTECH San 31,
Hyoja-dong, Nam-gu,
Pohang 790-784,
South Korea

Hildegard Meyer-Ortmanns¶

Department of Physics and Earth Sciences,
Jacobs University Bremen,
Campus Ring 1, 28759 Bremen,
Germany

Marc Timme∗∗

Chair for Network Dynamics,
Center for Advancing Electronics (cfaed) and Institute for Theoretical Physics,
Technical University of Dresden, 01062 Dresden,
Germany

(Dated: October 8, 2021)

The ongoing transition to renewable energy supply comes with a restructuring of power
grids, changing their effective interaction topologies, more and more strongly decentral-
izing them and substantially modifying their input, output and response characteristics.
All of these changes imply that power grids become increasingly affected by collective,
nonlinear dynamic phenomena, structurally and dynamically more distributed and less
predictable in space and time, more heterogeneous in its building blocks, and as a con-
sequence less centrally controllable. Here we review corner stone aspects of data-driven
and mathematical modeling of collective dynamical phenomena emerging in real and
model power grid networks by combining theories from nonlinear dynamics, stochastic
processes and statistical physics, anomalous statistics, optimization, and graph theory.
We introduce the mathematical background required for adequate modeling and analysis
approaches, give an overview of power system models, and focus on a range of collective
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dynamical phenomena, including synchronization and phase-locking, flow (re)routing,
Braess’ paradox, geometric frustration, spreading and localisation of perturbations and
cascading failures, as well as the non-equilibrium dynamics of power grids where fluctu-
ations play a pivotal role.
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I. INTRODUCTION

The mitigation of climate change is one of the greatest
challenges of mankind. Currently, 65% of all greenhouse
gas emissions are caused by the carbon dioxide (CO2)
emissions from fossil fuel combustion and industrial pro-
cesses (IPCC, 2014). Thus, a fundamental transforma-
tion of our energy system is inevitable to meet the goals
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of the Paris agreement to limit global warming (Rogelj
et al., 2015). Rapid actions are needed as greenhouse gas
emissions continue to increase and the remaining carbon
budgets shrink at an alarming rate (Figueres et al., 2017;
Rockström et al., 2017).

Power grids are at the heart of this transformation. Re-
newable energy sources have shown a remarkable devel-
opment in the last decades (Creutzig et al., 2017; Eden-
hofer et al., 2011; Wiser et al., 2016), but they fundamen-
tally change the operation of the grids they are connected
to. The decarbonization of heating, transport and other
sectors introduces new consumers to the electric power
grid. Gas and oil heatings are replaced by heat pumps,
and district heating plants use resistive heaters in times
of high renewable power generation (Gröger et al., 2015).
Batteries of electric vehicles have to be charged, which
may cause congestion in the grid (Bloess et al., 2018; Car-
valho et al., 2015), but also offer a chance for improving
stability (Gajduk et al., 2014b; Liu et al., 2013).

Power grids are central for our economy and daily life.
It is a uniquely critical infrastructure, as a variety of
other infrastructures and sectors are dependent on the
secure supply of electric power (Van der Vleuten and La-
gendijk, 2010). Communication, information processing,
public transport, even cooling infrastructure for food sup-
ply cannot work without electric power. The energy tran-
sition further increases this dependence, as other sectors
are being electrified. Ensuring a stable operation of the
power system is thus a necessity and a grand challenge.

Transforming the electric power system to meet the
21st century challenges constitutes a transdisciplinary
challenge (Brummitt et al., 2013). Modelling, simula-
tion and analysis of the physical grid has always been an
integral part of power engineering. By now, thousands of
simulations are run every hour to assess the state of the
grid and potential contingencies. But the grid does not
run in isolation, it is affected by the weather, by auto-
matic controls and information systems, energy markets,
and finally also by human operators and consumers. Un-
derstanding such interdependent systems is challenging,
in particular when they leave the normal state of opera-
tion in case of contingencies. Complexity science can ef-
fectively complement detailed simulation models. It can
elucidate fundamental mechanisms and interactions, pro-
vide explicative models, and identify new and unexpected
risks. At the same time huge amounts of data become
available from new measurement devices and smart grid
infrastructures. This fosters an empirical and statisti-
cal view on power grid operation and stability. In sum-
mary, power systems are becoming increasingly complex
and methods from statistical physics, nonlinear dynam-
ics and network science can play an important part to
address the current challenges.

Let us name three central challenges for power sys-
tem operation arising during the energy transition: (i)
The variability of renewable energy sources is perhaps the

most well known one. Wind and solar power generation is
determined by the weather and fluctuates on all temporal
and spatial scales. Synoptic and seasonal variability are
the most obvious features (Bloomfield et al., 2018; Heide
et al., 2010; Staffell and Pfenninger, 2018), but power
generation can also fluctuate within seconds due to at-
mospheric turbulence and the dynamics of clouds affect-
ing power grid operation (Anvari et al., 2016, 2017; Mi-
lan et al., 2013; Zhang et al., 2019). Fingerprints of these
fluctuations can be observed in power grid frequency data
(Haehne et al., 2018), cf. also (Gorjão et al., 2020b) for
a comprehensive data source.

Longer timescales have gained increasing interest re-
cently, ranging from inter-annual (Collins et al., 2018) to
decadal variability (Wohland et al., 2019) and the im-
pact of climate change (Schlott et al., 2018; Weber et al.,
2018; Wohland et al., 2017). A thorough statistical un-
derstanding of all modes of variability and their conse-
quences is integral for system operation.

(ii) Furthermore, wind and solar power are typically
generated at locations with favorable natural resources.
These locations are often far away from consumers, so
that a long-distance transmission of electric power be-
comes necessary (Pesch et al., 2014). This increases grid
loads and makes it vulnerable to large scale blackouts
via cascading failures. Robustness and vulnerability are
central topics in network science. Physicists have de-
veloped and analyzed a variety of models for cascading
failures to understand their propagation, their statistical
features and methods to mitigate them, see e.g. (Albert
et al., 2000; Carreras et al., 2002; Dobson et al., 2007,
2005; Motter and Lai, 2002; Nesti et al., 2018; Schäfer
et al., 2018; Witthaut et al., 2016; Yang et al., 2017).
More recently, the optimal design of networks has re-
ceived a vivid interest in the scientific community, see
e.g. (Kaiser et al., 2020a; Katifori et al., 2010; Nishikawa
and Motter, 2006).

(iii) Finally, renewable power sources are different from
conventional power plants operating synchronous ma-
chines. They are typically connected to the grid via
power electronic inverters with different characteristics
and dynamics (Carrasco et al., 2006). Inverters have
some important disadvantages, in particular they have
no intrinsic inertia to stabilize grid dynamics (Milano
et al., 2018), but offer a great flexibility in design and
control. Hence, the dynamical stability of complex net-
worked systems is a topic of rapidly growing importance,
cf. (Anvari et al., 2020). Research must address the sta-
bility of existing systems as well as the design of future
systems.

The goal of this review article is two-fold. First, it
provides a starting point for physicists interested in as-
pects of power system dynamics, operation and robust-
ness. To this end, the first part of the article is written
as a tutorial. We provide a very short review of the
main tools from dynamical systems and network science
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in chapter II. Then, we review basic principles of power
grid operation and provide an overview of static and dy-
namic models for power grids in chapter III. We focus on
the mathematical description of the elements of power
systems, avoiding most technical details covered in the
engineering literature (Grainger and Stevenson Jr., 1994;
Kundur, 1994; Machowski et al., 2008; Wood et al., 2014).
Chapter IV then briefly discusses the availability of power
system datasets required for own studies and simulations.
The tutorial part closes with a review of fundamental as-
pects of power grid stability in chapter V.

The second part of the article then reviews some recent
results obtained at the interface of statistical physics, dy-
namical systems, network science and power engineer-
ing. We first consider aspects of dynamical stability in
chapter VI. When do stable fixed points exist and how
do they depend on local dynamics and network topolo-
gies? Then we analyze the robustness and vulnerability
of power grids in chapter VII. How does a grid react
to the failure of single elements and how do large scale
blackouts emerge? Then we investigate dynamical per-
turbations or fluctuations and the transient dynamics of
grids in chapter VIII. We conclude with an outlook on
current and future research topics in chapter IX.

II. FUNDAMENTALS OF GRAPHS AND NETWORKS

A broad variety of collective dynamical phenomena in
future-compliant power systems crucially depend on how
consumers, producers, and storage infrastructures are in-
terconnected. The topology of the resulting interactions
typically exhibits a variety of complex structural features
beyond regular lattices or random structures. We here
briefly introduce basic concepts from graph theory used
to quantitatively describe such topologies and remark by
example where they emerge in the analysis and modeling
of power systems. A more comprehensive introduction
to graph theory and its applications can be found in a
variety of text books, as for example (Bollobás, 1998).

A graph G = (V, E) is given by a set V = {1, . . . , N} of
vertices together with a set E of edges that is a symmetric
subset of V × V, i.e. if i, j ∈ V then (i, j) ∈ E if and only
if (j, i) ∈ E. Because of this symmetry, such a graph is
also called an undirected graph. In a directed graph, the
edges are ordered 2-tuples, denoted (i, j) ∈ E, thus have
a direction from j to i and the edge set is not necessarily
symmetric.

If (i, j) ∈ E, we call i and j adjacent or neighbors and
write i ∼ j, where for directed graphs, i might be adja-
cent to j but not vice versa. The degree of a vertex is
the number of its neighbors; for directed graphs the in-
degree is the number of edges pointing to the vertex, and
the out-degree is the number of edges pointing from the
vertex. If the degree of every vertex is the same, ki ≡ k
for all i, the graph is called k-regular or just regular.

A walk in a graph is a sequence of vertices and edges

p = (v0, e0, v1, e1, . . . , ek−1, vk) , (1)

where each successive pair of vertices vj , vj+1 is con-
nected by an edge ej = (vj , vj+1). If no vertex repeats in
such a sequence, it is called a path. A cycle is a walk with
at least one edge, with first and last vertices identical and
with no other vertices repeating. A graph is connected if
there is a path from any of its vertices to any other. A
directed graph is strongly connected if there is a directed
path from any of its vertices to any other; it is weakly
connected if for any two of its vertices v and w there is a
directed path from v to w or from w to v. A graph with
no cycles is called a forest ; a connected forest is a tree.

Paths can be used to unambiguously define a metric
on a graph. The (unweighted) length of a path p is sim-
ply the number k of edges in the sense of equation (1).
The geodesic distance between two vertices vn and vm is
defined as the length of the shortest path connecting the
two vertices. Note that the shortest path is not necessar-
ily unique; if no such path exists, the distance is infinite.
In many applications, such a simple definition of distance
is not sufficient as edges may exhibit heterogeneous fea-
tures. If a distance or weight d(e) is assigned to every
edge e ∈ E, the weighted length of a path is given by

length(p) =

k−1∑
j=0

d(ej) . (2)

As before the length defines a weighted geodesic distance
via the shortest path, provided all d(e) are non-negative.

The modeling of power grids and other real-world net-
works includes but goes far beyond the basic concepts
of graph theory. In particular, we may assign quantities
such as voltages or power injections to the nodes, cur-
rents and power flows to the edges and study dynamical
systems on networks. We will thus need an algebraic de-
scription of networks, which links properties of nodes and
edges to basic properties of graphs defined above. For a
more detailed overview of algebraic graph theory and its
applications to power grids see (Dörfler et al., 2018).

A power grid has N vertices, often referred to as buses
in power engineering, and L edges or branches. Proper-
ties of vertices such as voltages are encoded in vectors
in RN or CN. The absolute value of each complex num-
ber encodes the voltage magnitude and the arguments
its phase (relative to a reference). Similarly, properties
of edges such as flows are encoded in vectors in RL or CL.
The topology of such a network or graph is encoded in
the adjacency matrix A ∈ RN×N with components

An,m =

{
1 if vertices n and m are adjacent,
0 otherwise.

(3)

Furthermore, it is useful to define the node-edge incidence
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matrix E ∈ RN×L with components (Newman, 2010)

En,` =

 1 if line ` starts at node n,
−1 if line ` ends at node n,

0 otherwise.
(4)

We note that power grids abstract to undirected graphs:
a transmission line can transmit power in either direc-
tion. For each edge we fix an orientation to encode the
direction of power flow: positive in one direction and neg-
ative in the other one. The orientation, the start and end
of an edge is arbitrary, but must be kept fixed.

The node-edge incidence matrix is useful to keep track
of network flows. Suppose that the flows over all edges
are denoted as a vector F ∈ RL, then the total in- or
out-flow at all nodes is given by EF ∈ RN. The kernel
of E corresponds to cycle flows: For any vector F 6= 0 in
the kernel, the in- and out-flow vanishes at every node,
such that the flow must be cyclic. We can fix a basis for
the kernel by choosing L−N+1 independent fundamental
cycles and encode this basis in the cycle-edge incidence
matrix C ∈ RL×(L−N+1) with components

C`,n =

 1 if edge ` = (i, j) belongs to cycle c,
−1 if the reverse edge (j, i) belongs to cycle c,

0 otherwise
(5)

such that EC = 0. In a plane graph, a graph drawn on
a plane without edge crossings, one typically chooses the
facets of the graph as the fundamental cycles. After fixing
a basis, any cycle flow (any vector in the kernel of E) can
be written as F = Cf , with coefficients f1, . . . , fL−N+1.

Not all edges in a grid are equally strong; for instance
the impedance typically scales with the length of a line
such that longer transmission lines will have lower con-
ductances and susceptances. We assign weights bij to all
edges (i, j). These weights can either be encoded in a
diagonal matrix

Bd = diag(b1, b2, . . . , bL) ∈ RL×L (6)

or we can define a weighted adjacency matrix

An,m =

{
bnm if vertices n and m are adjacent,

0 otherwise.
(7)

A particularly important matrix to characterize the sta-
bility of a network dynamical system is the Laplacian
matrix Λ ∈ RN×N with components (Newman, 2010)

Λn,m =


∑N
i=1 bni forn = m,
−bnm if n 6= m and n, m are adjacent,

0 otherwise.
(8)

Using the node-edge incidence matrix, the Laplacian is
written as Λ = EBdE

>, where the superscript > denotes
the transpose of a matrix. If all weights are positive, Λ is

symmetric and positive semi-definite, i.e. all eigenvalues
are real and non-negative and can be ordered as

0 = λ1 ≤ λ2 ≤ · · · ≤ λN. (9)

The second eigenvalue λ2 measures the algebraic connec-
tivity of a graph (Fiedler, 1973) and the associated eigen-
vector v2 is called the Fiedler vector. More generally, the
number of zero eigenvalues of Λ equals the number of
connected components of the graph (Newman, 2010).

III. POWER SYSTEM MODELS

In this section we introduce the basic mathematical
models for power system operation and stability. We
start with the fundamental relations for currents and
powers flows in AC power grids leading to static power
grid models, then introduce dynamical models for syn-
chronous machines and power electronic inverters.

A. Static models

1. Fundamentals of AC power flow

In an AC power grid the voltages V and currents I
oscillate approximately sinusoidally with time

V (t) = Vpeak cos(ωt+ ϑV ) =
√

2<(V eiωt),

I(t) = Ipeak cos(ωt+ ϑI) =
√

2<(Ieiωt), (10)

where we have defined the complex -valued amplitudes

V =
Vpeak√

2
eiϑV , I =

Ipeak√
2
eiϑI . (11)

Voltage and current are typically out of phase due to ca-
pacities or inductances, which is reflected by the phase
factors ϑV and ϑI . As the phases of voltage and current
play essential roles in describing grid operation, we will
mainly employ a complex notation. In the engineering
literature, the complex quantities V and I are referred to
as phasors and denoted by an underline. We will adopt
this notation in the following, but will denote the imag-
inary unit by the symbol i as it is common in physics.
The electric power is oscillating, too, but only the time-
averaged value

P =
1

T

∫ T

0

V (t)I(t)dt = <(V I∗), (12)

the real power or active power can do work. The imagi-
nary part Q = =(V I∗) describes the power temporarily
stored in capacitances and inductances and is referred to
as the reactive power. Furthermore, one defines the ap-
parent power S = P + iQ = V I∗. These relations show
that the relative phases of voltages and currents are es-
sential for the power flow in a grid. We note that devia-
tions from perfect sinusoidal signals do occur in practice,
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for example higher harmonics in power electronic sources
(Liang and Andalib-Bin-Karim, 2018). Nevertheless, this
idealization is extremely helpful for the modeling and
analysis of power systems.

The basic relation between voltage at the nodes k, n ∈
{1, . . . , N} of a power grid and the currents flowing be-
tween the nodes is given by Ohm’s law,

Ikn =
1

zkn
(V k − V n) = ykn(V k − V n), (13)

where zkn = rkn + ixkn is the impedance and ykn =
1/zkn the admittance of the transmission line between
the nodes k and n. The admittance is divided into its
real and imaginary part, ykn = gkn + ibkn, where gkn
is the conductance and bkn the susceptance. For multi-
circuit transmission lines, we take ykn to be the sum of
the admittances of the single circuits and ykn = 0 if no
transmission line exists. The total current injected to the
node k is then given by Ik =

∑
n Ikn =

∑
n ykn(V k−V n).

For actual calculations it is convenient to introduce the
nodal admittance matrix Y ∈ CN×N with the entries

Ykn = Gkn + iBkn =


∑N

n=1
ykn if k = n;

−ykn if k 6= n.
(14)

Ohm’s law can then be rewritten in a vectorial form,
which yields the network equations

I = Y V , (15)

where I = (I1, I2, ..., IN) represents the complex currents
injected into the N nodes, and V = (V 1, V 2, . . . , V N) de-
notes the complex voltages. The apparent power injected
to a node k is then given by

Sk = V kI
∗
k. (16)

Real power transmission and distribution grids are
mostly constructed as three-phase systems. Hence there
are three conductors with voltages VA(t) = Vpeak cos(ωt+
ϑV ), VB(t) = Vpeak cos(ωt + ϑV + 2π/3) and VC(t) =
Vpeak cos(ωt+ϑV +4π/3) to ground. The voltage between
two conductors oscillates sinusoidally with an amplitude
of
√

3Vpeak. If all three conductors have the same volt-
age magnitude and a fixed phase difference, it is sufficient
to keep one value of V and I. The basic relations such
as (15) remain unchanged but the transmitted power is
three times as large as in a single-phase system. The
power balance at each node hence reads

Sk = 3V kI
∗
k (17)

=

N∑
n=1

3|Vk||Vn| (Gkn − iBkn) (cos θkn + i sin θkn) ,

where θkn = θk − θn is the phase difference of complex
voltages V k and V n. Real and imaginary parts yield the

𝑉1

(𝑎)

(𝑏)

𝑦12 =
1

𝑟12 + i𝑥12
𝑉2

𝐼2𝐼1

𝑉1

𝑦12 =
1

𝑟12 + i𝑥12

𝐼1

i
𝑏12
𝑐

2

𝑉1

N12
i
𝑏12
𝑐

2
𝑉2

𝐼2N12
∗ 𝐼1

N :1

FIG. 1 Transmission elements: (a) a simple series admit-
tance. (b) A unified transmission element consisting of an
ideal transformer and a π-equivalent line model.

active and the reactive power balance conditions

Pk =

N∑
n=1

3|Vk||Vn| (Gkn cos θkn +Bkn sin θkn) , (18)

Qk =

N∑
n=1

3|Vk||Vn| (Gkn sin θkn −Bkn cos θkn) . (19)

A detailed discussion of the network equations and the
resulting power flow equations are provided in (Grainger
and Stevenson Jr., 1994, Chapters 7-9) and (Wood et al.,
2014, Chapter 6).

2. Transformers and the per unit system

Real-world transmission system are more diverse and
include different transmission elements. In particular,
we consider the following three types of devices. First,
transformers are essential to link different voltage levels,
from the transmission grid at highest voltages (380 kV in
Europe, up to 765 kV in Northern America) down to the
house connecting lines at low voltages (380 V in Europe).
Second, special transformers may shift the phase of volt-
age and current on the two terminal ends (Verboomen
et al., 2005). Third, the model for an ordinary trans-
mission line needs to be extended to take into account
charging capacity typically present in real-world lines.

Remarkably, one can include all these devices into the
common network model using a system of rescaled vari-
ables, the per unit (pu) system, and a unified model for
all transmission elements depicted in Fig. 1 (b). The
equivalent circuit of this transmission element includes
an ideal transformer with tap ratio t and phase shift θshift

in addition to a π-equivalent line model. The line model
includes the series admittance y and a charging suscep-
tance bc, which is attributed equally to the two end points
of the line for the sake of simplicity.

To see how the network equations have to be modified
in each case, we first consider a single transmission ele-



7

ment as shown in Fig. 1 (b). The voltages and currents
on the two terminals of the ideal transformer are related
by a factor N12 = t12e

iθshift
12 . The current flowing through

the series admittance is given by y12(V 2 − V 1/N12) ac-
cording to Ohm’s law. Kirchhoff’s current law for the
junctions marked by thick black dots in the figure read

I2 = y21

(
V 2 −

V 1

N12

)
+

i

2
bc12V 2, (20)

N ∗12I1 = −y12

(
V 2 −

V 1

N12

)
+

i

2
bc12

V 1

N12
. (21)

It is convenient to introduce scaled units, which are re-
ferred to as ‘per unit’ or ‘pu’ system in power engineering.
We fix a reference value Sbase for the power in the entire
grid and a reference value Vbase,k for the voltage sepa-
rately for every voltage level k. The reference values for
the currents and admittances are then given by Ibase,k =
Sbase/(3Vbase,k) and Ybase,k = Ibase,k/Vbase,k. Generally,
one selects the nominal voltage of each voltage level as
the reference value, while a typical value for the power
would be Sbase = 100 MVA. For the π-transmission line
depicted in Fig. 1 this choice yields Vbase,1/Vbase,2 = t12.
Dividing Eq. (20) by Ibase,2 = Ybase,2Vbase,2 then yields

I2

Ibase,2
=

y21

Ybase,2

(
V 2

Vbase,2
− e−iθshift

12
V 1

t12Vbase,2︸ ︷︷ ︸
=Vbase,1

)

+
i

2

bc12

Ybase,2

V 2

Vbase,2

⇒ Ĩ2 = ỹ21

(
Ṽ 2 − e−iθshift

12 Ṽ 1

)
+

i

2
b̃c12Ṽ 2, (22)

where we use a tilde to denote the scaled quantities in
the pu-system, as e.g. Ĩ2 = I2/Ibase,2. Equation (21)
can be rescaled analogously if we adopt the convention
that θshift

12 = −θshift
21 . We note that Ybase,2 and not Ybase,1

has to be used in the normalization of the impedance,
ỹ12 = ỹ21 = y12/Ybase,2, as the line is on the 2-side of the
transformer, not on the 1-side.

In a large power grid with many nodes and transmis-
sion lines we then obtain

Ĩk =

N∑
n=1

ỹkl

(
Ṽ k − eiθshift

kn Ṽ n

)
+

i

2
b̃charge
kn Ṽ k. (23)

We note that an ideal transformer appears as a simple
series admittance ỹ12 in the pu system. This simplifica-
tion will be used in the modeling of generators, which are
typically connected to the grid via a step-up transformer.

Rewriting equations (23) in a vectorial form we recover
the network equations in the form (15), however with a
modified modal admittance matrix Ỹ defined as

Ỹkn =


∑N

n=1
ỹkn + ib̃ckn/2 if k = n,

−ỹkneiθshift
kl if k 6= n.

(24)

Finally, the power is rescaled to the pu system by di-
viding Eq. (17) through the reference value Sbase =

3Vbase,kIbase,k which yields S̃k = Ṽ k Ĩ
∗
k as desired.

The pu system thus simplifies the network equations,
as we can treat all transmission elements alike. In addi-
tion, it is advantageous for numerical calculations as all
quantities are of order unity such that rounding errors are
minimized. All details of the transmission elements, are
absorbed in the nodal admittance matrix Ỹ . In the ab-
sence of phase shifters, Ỹ = Ỹ > is symmetric. A detailed
discussion of the pu systems and its benefits is provided
in (Grainger and Stevenson Jr., 1994, Chapters 1,2).

3. The AC load flow equations

In previous sections we have established a set of non-
linear algebraic equations describing the steady state of
AC power grids, linking nodal power injections Pn, Qn
to nodal state variables θn, |Vn|. Two of these four quan-
tities are fixed externally for every node, for instance
via power demand. The remaining unknown variables
are obtained by numerical solution of the load-flow equa-
tions, see (Grainger and Stevenson Jr., 1994, Chapter 9),
(Wood et al., 2014, Chapter 6) for a detailed introduc-
tion.

In practice, we distinguish three types of nodes. A PV
bus is typically connected to a generator, which provides
a fixed power output P at fixed voltage magnitudes |V |.
A PQ bus represents a node with a given consumption,
such that net injected active power P and reactive power
Q are given, while the voltages at these nodes are un-
known. A special kind of bus is the slack bus, that cap-
tures the supply of the power necessary to have overall
power balance in the system to ensure that there exists
a steady state solution. It acts as an ideal voltage source
(fixed V ), where the parameters P and Q remain un-
specified to balance active and reactive power during the
iteration towards the steady state solution. This is nec-
essary because power losses on the transmission lines are
not known a priori, before the solution is obtained.

Suppose we are interested in a transmission grid of N`
loads, Ng generators plus one generator node taken as
slack. Then, we have 2N` + Ng unknown state variables:
the phases of all Ng + N` non-slack nodes and the voltage
magnitudes of N` load nodes. These unknown variables
are fixed by 2N` + Ng nonlinear algebraic equations:

Pn
(
θ1, · · · , θNg+N` , |V1|, · · · , |VN` |

)
= P sp

n ,

Qk
(
θ1, · · · , θNg+N` , |V1|, · · · , |VN` |

)
= Q sp

k , (25)

where n labels all non-slack nodes, while k labels load
nodes only. The superscript “sp” indicates that values on
the right side are specified beforehand and the functions
Pn(·) and Qk(·) are given by Eq. (18) and Eq. (19).

A common and effective way to solve this equation
system is the Newton-Raphson method (cf. (Grainger
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and Stevenson Jr., 1994, Chapter 9), (Wood et al., 2014,
Chapter 6)), which iteratively updates the state vector
from an initial guess towards the solution of Eqs. (25).
The solution for the state vector describes the power grid
in steady-state operation. We note that a set of nonlin-
ear equations may exhibit a single well-defined solution
but may also have no or several solutions. The lack of
a solution indicates an unstable situation to be further
discussed in section V.A, while multistability will be ad-
dressed in section VI.C.3. Recent advances and chal-
lenges in numerical methods for AC power flow compu-
tations are discussed in (Mehta et al., 2016; Trias, 2012).

4. Linearized power flow

For small loads and losses in a power grid, load flow
calculations simplify considerably (Wood et al., 2014,
Chapter 6.18) via linearized power flow equations that
are based on three approximations. (i) For each trans-
mission element, the resistance and the charging suscep-
tance are small compared to the reactance and are thus
neglected. Hence, the admittance is purely imaginary,
ynk = 1/(ixnk). (ii) Variations of the voltage magnitude
are typically small in transmission grids, such that we
can fix them at the reference value of the respective volt-
age level. In the pu system we thus write V n = eiθn and
the power balance at a node n reads (cf. Eq. (18) and
(20))

Sn = V nI
∗
n =

N∑
k=1

1

ix̃nk
(V ∗n − e−iθshift

nk V ∗k)V n. (26)

Technically, all nodes must then be considered as PV
buses, such that no equations for the reactive power must
be taken into account. Taking the real part of equation,
we obtain the balance equation for the real power,

Pn =

N∑
k=1

Pn→k =

N∑
k=1

1

x̃nk
sin(θn − θk − θshift

n,k ). (27)

(iii) Finally, small loads imply that the phase differences
across a transmission line are small such that the sine
function is approximated to first order. The load flow
calculations then reduce to a set of linear equations

N∑
k=1

Bnkθk = P sp
n − P shift

n , (28)

where P shift
n =

∑
k Bnkθ

shift
nk accounts for the effects of

the phase shifting transformers and the matrix B ∈ RN×N

is the nodal susceptance matrix expressed in per-units
but without taking into account potential phase shifts:

Bn,k =


∑

m
x̃−1
nm if n = k;

−x̃−1
nk if n is connected to k

0 otherwise.

(29)

The simplified Eq. (28) is often referred to as the DC ap-
proximation, as it is mathematically equivalent to Kir-
choff’s circuit equation for DC electric circuits. Still,
it describes the flow of real power in AC power grids.
Obviously, linear equations can be solved much faster
than nonlinear load flow Eqs. (25), which is advanta-
geous when the flow must be calculated for many differ-
ent scenarios of generation and load. Furthermore, the
linear approximation avoids the problem of multiple or
disappearing solutions or multiple optima in optimization
problem. Limits of its applicability are discussed in detail
in (Purchala et al., 2005; Stott et al., 2009; Van Hertem
et al., 2006).

A word of caution is in order, as the symbol B is used
for several related but different quantities. Transmission
lines and ordinary transformers have a positive reactance
x̃ > 0. Hence, the off-diagonal elements of the nodal
susceptance matrix (29) are negative. In contrast, the
imaginary parts of the nodal admittance matrix elements
(14) are positive. Both quantities are denoted by the
symbol B and one must be careful to not confuse them.

5. Matrix formulation

The linearized power flow equations can be condensed
in a highly practical compact matrix notation. So let N

denote the number of nodes and L the number of lines in
a grid as before. We define the vectors of power injection
P = (P1, . . . , PN)

> ∈ RN, the vector of voltage phase
angles θ = (θ1, . . . , θN)

> ∈ RN and the vector of line flows
F = (F1, . . . , FL)

> ∈ RL. As the flow is directed, we
must assign an orientation to each line in the grid which
is arbitrary but must be kept fixed.

The directed real power flow F` on a line ` from node
m to node n is given by F` = x−1

` (θm − θn). Using
the diagonal matrix Bd defined in Eq. (6) with weights
b` = x−1

` and the node-edge incidence matrix (4), the
relation of flows and phase angles are given by

F = BdE
>θ. (30)

The real-power balance at each node now reads

P = EF , (31)

stating that the power flowing out of each node must
equal the power injected at the node. Combining (30)
and (31) the equation for the power injections in terms
of the voltage angles is obtained as

P = EBdE
>θ = Bθ. (32)

Together with Eq. (30) we thus have a linear relation
between line flows F and nodal power injections P .

The matrix B = EBdE
> with elements given is

Eq. (29) is a weighted Laplacian and thus has a single
zero eigenvalue if the network is connected (cf. section



9

II). Thus, it is non-invertible and we solve (32) for θ via
the Moore-Penrose pseudo-inverse B∗ to obtain the line
flows directly as a linear function of the nodal power in-
jections

F = BdE
>B∗︸ ︷︷ ︸

=:PTDF

P . (33)

The matrix prefactor is called power transfer distribution
factor (PTDF) matrix (Wood et al., 2014), as it describes
how power injections are distributed throughout the grid.

The zero eigenvalue of the Laplacian B represents
a phase-shift invariance. Uniformly shifting all nodal
phases by the same constant c, θn → θn + c, does not
affect any power flows. Fixing the phase angle θk ≡ 0
at one node k (the slack node) removes this degree of
freedom. We then remove the node from the analysis by
removing the k-th row from the vector θ and the k-th
row and k-th column from the matrix B. The resulting
matrix is called a grounded Laplacian.

6. Generalized linear approximations

Several generalizations of the DC approximation have
been developed and we briefly comment on three of them.
(i) First, one can improve on the linear approximation of
the sine function by rewriting the governing equations of
the DC approximation in two parts. First we have

P = EBdψ, (34)

where ψ` denotes the sine of the phase difference along
the line `. In the ordinary DC approximation, one simply
replaces the sine by its argument; in vectorial form one
thus obtains ψ = E>θ. If we do not neglect the sine, we
would instead have

ψ = sin(E>θ). (35)

The basic idea of the generalized DC approximation
(Dörfler and Bullo, 2013; Simpson-Porco, 2017) is to first
obtain ψ approximately and then solve for θ. The gen-
eral solution to the underdetermined Eq. (34) reads

ψ = E>B∗P +B−1
d Cf , (36)

where C is the cycle-edge incidence matrix (5) and f
a vector of cycle flows. To find the actual value of the
cycle flows, we would obtain the correct solution of the
nonlinear power flow equations, an approach discussed
in section VI.C. Here we consider practical approximate
solutions, and assume the cycle flows f to be negligible
under normal operating conditions. Eq. (35) then yields

θ ≈ (EE>)−1E arcsin(E>B∗P ). (37)

(ii) A second generalization is to approximately in-
corporate Ohmic losses in a linear fashion. Two itera-
tive procedures that introduce losses, but keep the as-
sumption of fixed voltage magnitudes, are described in
(Simpson-Porco, 2017; Stott et al., 2009).

(iii) A third class of linear models includes reactive
power flows and voltage variations by appropriate lin-
earization of the nonlinear AC load flow equations. Dif-
ferent approaches have been discussed in (Coffrin et al.,
2012; Yang et al., 2019; Zhang et al., 2013).

7. Hybrid power grids

High voltage DC (HVDC) transmission lines can trans-
mit bulk power over large distances with lower capital
cost and lower losses than standard AC lines (Setreus
and Bertling, 2008). They are connected to AC via power
electronic converter stations, which offers a high degree of
flexibility. The transmitted real power can be controlled
by the grid operator. Modern converter stations can pro-
vide system services such as reactive power. HVDC lines
are included in a load flow study rather easily by repre-
senting the two converter stations by two additional PV
buses. One of the converter nodes draws a power Pf < 0
from the grid at node f , and the other converter then
feeds a power

Pt = −Pf − Ploss = −Pf − (l0 − l1Pf ), (38)

back into the grid at node t. Losses are typically small so
that l0 is of the order of a few MW and l1 a few percent.

B. Optimal power flow

A fundamental problem in power engineering and en-
ergy economics is to determine the cost-optimal dispatch
of generators: Which generators should run to satisfy a
given demand at minimum costs (Grainger and Steven-
son Jr., 1994, Chapter 13),(Wood et al., 2014, Chapter
8)? We will address this problem in terms of the DC
approximation, taking into account the real power gen-
eration and demand, but neglecting losses. Suppose that
the total demand or load is given by P load

tot and that there
are Ng generators which can be used to satisfy this de-
mand at minimum costs. The actual generation P gen

m of
each generator m = 1, . . . , Ng is bounded by the technical
capacity such that we have the constraints

0 ≤ P gen
m ≤ Pmax

m . (39)

The power balance condition in the grid reads∑Ng
m=1 P

gen
m = P load

tot . We assume for simplicity that the
costs are proportional to the output P gen

m for each gener-
ator. Then the total variable costs can be written as

Costtot =

Ng∑
m=1

cmP
gen
m , (40)
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where cm denotes the variable costs for generator m. If
there are no further constraints, the solution with min-
imum costs is simple: Switch on all generators consecu-
tively according to their variable costs cm such that

P gen
m =


Pmax
m cm < c∗

P load
tot −

∑′
m P

max
m for cm = c∗

0 cm > c∗,
(41)

where c∗ is the variable cost of the last generator switched
on which is identified with the market electricity price.
The primed sum in the equation runs over all generators
with cm < c∗. This is called the merit order principle.

In real-world applications there are many more neces-
sary conditions and constraints. Most importantly, the
real power flow in each transmission line must not exceed
the line rating in order not to become overloaded and fail,

|F`| ≤ Fmax
` for all lines `. (42)

To satisfy this condition we must consider where power
is generated and consumed. In particular, the demand
or load P load

i must be specified separately for every node
i ∈ {1, . . . , N} of the grid. We can then express all line
flows F` in terms of the dispatch P gen

m as follows. We
first introduce a generator incidence matrix Egen which
indicates where each generator is connected to the grid,

Egen
i,m =

{
1 if generator m is connected to node i
0 otherwise.

(43)
The resulting net real power injection is thus given by

Pn =

Ng∑
m=1

Egen
n,mP

gen
m − P load

n , (44)

for every node n. Next, the line flows F` can be expressed
by power injections via Eq. (33), leading to an affine lin-
ear relation of flows F` and optimization variables P gen

m .
Finally, we arrive at the following important optimization
problem, commonly referred to as DC or linear optimal
power flow (DC-OPF):

min
P gen
m

Ng∑
m=1

cmP
gen
m (45)

such that 0 ≤ P gen
m ≤ Pmax

m , |F`| ≤ Fmax
` .

Mathematically, this optimization problem is a linear
program which admits an efficient solution. Different
formulations and their computational efficiency are dis-
cussed in (Hörsch et al., 2018b). Eq. (45) represents the
basic optimal power flow problem and various extensions
have been discussed for real world applications leading to
a vast body of literature (Frank et al., 2012a,b; Huneault
and Galiana, 1991; Momoh et al., 1999a,b). The lin-
ear function (40) is a strong simplification of the real
cost function. It can be replaced by a convex function

without changing the overall complexity of the optimiza-
tion problem. In contrast, a non-convex cost function
strongly alters the nature of the problem, making it hard
to solve in general. Another approach is to consider dif-
ferent modes of operation of a generator. In the simplest
case the generator is either on or off. If a generator is
on it typically has a minimum generation such that an
additional constraint Pmin

m ≤ P gen
m arises. To take into

account this switching behavior, an additional binary op-
timization variable is introduced, leading to a a mixed-
integer linear program (MILP).

Variable renewable energy sources may be included in
two different ways. If renewable generation is taken to
be fixed, the real power load at each node P load

i is re-
placed by the residual load, i.e. the difference of load
and renewable generation. However, renewable genera-
tion will exceed the load at least temporarily in future
energy systems. To allow for a curtailment of the power
generation, wind farms and PV parks are included as
generators with zero variable costs and Pmax

m is set to the
assumed or forecasted power generation. For optimiza-
tion, we may then choose any value between P gen

m = 0
(complete curtailment) and P gen

m = Pmax
m , depending on

what best benefits the grid. A systematic way of optimiz-
ing the dispatch under uncertainties in production and
demand is sketched in section VIII.E, where the system
constraints are satisfied only with a specified probability.

A further natural extension is to abandon the assump-
tions of the DC approximation and start from the full
nonlinear AC power flow equations. However, the result-
ing optimization problem is again non-convex which is
much harder to solve. The development of algorithms for
this problem is an active field of research (see, e.g. (En-
gelmann et al., 2017; Erseghe, 2014)).

C. Dynamic models

While load flow calculations describe the steady-state
of a power grid, a large set of models of different complex-
ity is available to analyze its dynamics and the stability
of steady states. Which model to chose depends crucially
on the phenomena and the time scales that shall be inves-
tigated (Sauer et al., 2018). The bulk power generation
and demand change on time scales of minutes to hours.
Optimization models are routinely used to model how
the unit commitment and power flows change from hour
to hour. In the following, we focus on the next time scale
and address aspects of synchronisation, transient stabil-
ity and, to a lesser extend, voltage dynamics and load-
frequency control. These phenomena typically take place
on time scales of 10−1 to 101 seconds. Faster phenomena,
including subtransient effects and electromagnetic propa-
gation effects, as well as the modeling of generator control
and protection systems are not covered in this review ar-
ticle. A much more detailed and extensive introduction
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can be found in the standard text books (Kundur, 1994;
Machowski et al., 2008; Sauer et al., 2018). An overview
of different modeling aspects can be found in the articles
(Gajduk et al., 2014a; Nishikawa and Motter, 2015).

1. The swing equation

The classic swing equation describes the dynamics of
the mechanical rotation of a synchronous machine (Ma-
chowski et al., 2008, Chapter 5.1), (Nishikawa and Mot-
ter, 2015). The basic dynamical variable is the mechani-
cal phase angle which is identical to the voltage phase an-
gle (hence the term ’synchronous machine’). The phase
angle δ is commonly measured relative to a frame of ref-
erence rotating at the reference frequency of the grid ωR.
The dynamics is then simply given by Newton’s equation

Jδ̈ = Tmech − Tel −Dmechω − (Del + κ)∆ω, (46)

where ω = δ̇ is the angular frequency, ∆ω = ω − ωR its
deviation from the reference, J is the moment of inertia
of the machine, Tmech the mechanical torque driving the
rotating machine and Tel the electromagnetic torque due
to the power transferred to the grid. The machine experi-
ences mechanical friction with damping coefficient Dmech

and an effective damping due to damper windings charac-
terized by coefficient Del. In addition, one sometimes in-
cludes the effects of a frequency controller with gain con-
stant κ, which will be discussed in detail in section III.D.
Aggregating the damping factors D = Dmech + Del + κ
and noting that δ̇ = ω we obtain

JωRδ̈ +DωRδ̇ =
ωR
ω

[
(Tmech −DmechωR)ω︸ ︷︷ ︸

=Pmech

−Telω︸︷︷︸
=Pel

]
.

(47)
We have thus related the dynamics to the net mechanical
input power Pmech and the electric power Pel acting on
the machine. The swing equation is used to analyze the
stability and small-amplitude dynamics around a steady
state, hence we can approximate ωR/ω ≈ 1.

As for static flows, calculations are often carried out
in dimensionless units, i.e. the pu system. To make the
swing equation (47) dimensionless, we divide it by the
rated power of the machine PR and define the quantities

H =
1
2Jω

2
R

PR
, D̃ =

DωR
PR

. (48)

The inertia constant H measures the ratio of stored ki-
netic energy and output power of the machine when it
operates under normal conditions. Typical values are of
the order of 4− 6s. Then, we obtain the swing equation

2H

ωR
δ̈ + D̃δ̇ = P̃mech − P̃el, (49)

where the power is now expressed in the pu system. The
motion of the generator is coupled to the rest of the grid
via the exchanged real power Pel, which we discuss below.
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FIG. 2 Schematic of round-rotor synchronous machine (left)
and a salient pole machine (right).

2. Principles of synchronous machines

As a next step towards a full machine model, we have
to examine how the mechanical rotation induces voltages
and currents. A careful introduction can be found in
(Machowski et al., 2008, Chapter 3.3), we here provide
only the essential results. Consider first an unloaded
round-rotor generator as depicted in Fig. 2. The rotor
carries a field coil, where a DC current If generates a
magnetic field. The stator consists of three coils called
A,B,C in which the rotating field induces an AC volt-
age, cf. section III.A.1. The magnetic flux in the A coil
with Mf windings, ΨrA(t) = MfIf cos(ωt), induces the
voltage

ErA(t) = −dΨrA

dt
= ωMfIf sin(ωt), (50)

commonly referred to as the ’air-gap’ electromagnetic
force (EMF). The EMFs in coils B and C are the same up
to a phase shift of ±2π/3. If the generator is connected
to a load or the grid, a current

IA(t) = IM cos(ωt− ϕ) =
√

2<
(
Ieiωt

)
(51)

flows through the coil. It is generally phase shifted with
respect to the voltage. Here I = Ime

−iϕ/
√

2 is a complex
(“phasor”) quantity. The voltage drop at the coil then
reads

ErA(t) = ωMfIf sin(ωt) + ωLA︸︷︷︸
=:XA

IM cos(ωt− ϕ). (52)

An explicit modeling of synchronous machines, includ-
ing magnetic fluxes and DC currents, is cumbersome and
not always necessary for analyzing large grids with tens to
thousands of machines. Often, an aggregated description
in terms of voltage and current phasors is sufficient. No-
table exceptions include the modeling of reactive power
limits for voltage collapse, the detailed simulation of sys-
tem wide transients, or the design of power system stabi-
lizers. In the aggregated description, one defines the two
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FIG. 3 Equivalent circuit diagram of (a) a round-rotor syn-
chronous machine and (b) a salient pole machine.

phasor variables Ef = ωMfIf/
√

2 and Er describing the
air-gap EMF. Then, Eq. (52) reads Er = Ef − iXAI.
We can further take into account imperfections, losses
and leakage of magnetic flux by an additional impedance
Rl+iXl between the air-gap EMF and the terminal volt-
age of the generator V g to obtain

V g = Ef − iXAI − (Rl + iXl)I. (53)

Hence, the basic relation between the rotor quantities,
the air-gap EMF at the stator coils, and the terminal
generator voltage can be represented by a simple equiva-
lent circuit as depicted in Fig. 3. This description is very
effective and compatible with electric circuit theory.

In a salient pole machine the rotor is asymmetric, see
Fig. 2. The asymmetry can be taken into account ap-
proximately in an effective model that differs only slightly
from the case of a round-rotor machine. We decompose
all phasors into two contributions, in- and out-of-phase
with the magnetic flux of the rotor. The two components
are denoted by the subscripts d and q referring to the di-
rect and quadrature axis, respectively. To describe the
asymmetry, we replace the effective reactance XA by XAd

and XAq for the d− and q−component. Hence Eq. (53)
is replaced by the two-component equations

Ed = Vgd +XqIq +RlId = 0

Eq = Vgq −XdId +RlIq = Ef ,

with Xq = XAq +Xl and Xd = XAd +Xl. Fig. 3 shows
the equivalent diagram of the synchronous machine. Re-
combining the components yields the phasors of current
and terminal voltage,

V g = V gd + V gq = Vgd + iVgq,

I = Id + Iq = Id + iIq. (54)

Why have we introduced the EMFs Eq and Ep in addi-
tion to Ef? The quantities Ed,q characterize the physical

source of the induced voltage – the magnetic flux of the
field coil, while Ef quantifies the current in the field coil.
The simple relations Eq = Ef and Ed = 0 hold only dur-
ing the steady operation of the machine. After a distur-
bance, the magnetic flux changes and so do the effective
EMFs Eq,d. Hence, Eq,d become dynamic state variables
for which we introduce the equations of motion in the
next section. In contrast, Ef is a fixed system parame-
ter or, if we include excitation control of the synchronous
machine, a control variable.

3. Dynamics of synchronous machines

We now proceed to model the transient dynamics of
a synchronous machine. A detailed derivation is avail-
able in textbooks on electric machines (Machowski et al.,
2008, Chapter 11.1). Here we only quote the result and
provide a brief motivation for the form of the resulting
equations.

Recall that a machine in the steady state was mod-
eled by an EMF E = Eq + Ed connected to the termi-
nal ends via the reactances Xq and Xd, respectively. A
similar approach can be used to describe the transient
dynamics of a synchronous machine. The EMFs become
time dependent, commonly indicated by a dash. Simi-
larly, we must assign a different, transient value to the
reactances. We stress that these are only effective quan-
tities, which yield a highly condensed description of the
dynamics. A full dynamical model of a synchronous ma-
chine must be based on the magnetic fluxes in the dif-
ferent coils, the voltages and currents and the model’s
complexity increases quickly.

We first consider the EMF dynamics in the q-axis,
which quantifies the flux in the field coil (more precisely
the field flux linkage). In steady state the flux is propor-
tional to the voltage exciting the field coil, which leads
to Eq = Ef . In the transient regime two additional
terms have to be taken into account when considering
the voltage in the field coil. Firstly, the magnitude of
flux changes leads to an inductive term proportional to
Ėq. Secondly, there is a term due to the coupling to the
stator. A careful accounting of these terms yields the
equation (Machowski et al., 2008)

E′q + TdoĖ
′
q − (Xd −X ′d)Id = Ef . (55)

A similar relation can be found for the d-axis EMF:

E′d + TqoĖ
′
d + (Xq −X ′q)Iq = 0. (56)

We note that these two equations cover only the tran-
sient dynamics after a disturbance. Further models have
been introduced to describe the very short sub-transient
dynamics. We omit these models, as they typically yield
only a small improvement (Stott, 1979; Weckesser et al.,
2013). It should be noted, however, that higher-order
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models include damper winding explicitly, which we had
to include phenomenologically in the swing equation.

4. Synopsis: A hierarchy of dynamical models

Combining the results from the previous section with
the swing equation we obtain a hierarchy of models (Ma-
chowski et al., 2008, Chapter 11.1). In the two-axis or
fourth order model the generator is described by four
state variables, the transient EMFs E′q and E′d, the me-
chanical phase angle δ relative to the grid and its deriva-
tive ω, which evolve according to

2H

ωR
ω̇ = −D̃ω + P̃mech − P̃el,

δ̇ = ω,

TdoĖ
′
q = Ef − E′q + (Xd −X ′d)Id,

TqoĖ
′
d = −E′d + (Xq −X ′q)Iq. (57)

The one-axis or third-order model neglects the dynamics
of E′d (Schmietendorf et al., 2014). Often it is set to
zero, E′d = 0, as in the elementary steady state model
discussed in section III.C.2. Hence, the model reduces to
three state variables per generator and the last equation
in (57) is omitted.

The second order or classical model is widely used in
the analysis of power system dynamics. It describes the
mechanical motion of the generator at constant EMFs:

2H

ωR
ω̇ = −D̃ω + P̃mech − P̃el,

δ̇ = ω. (58)

To study the resulting dynamics of the state variables,
we have to specify the remaining quantities in the equa-
tions of motion. The electric quantities P̃el, Iq and Id
are time dependent. In fact, they are related to the
state variables of all connected generators via algebraic
equations describing the grid as discussed in detail be-
low. The quantities Ef and P̃mech are set by the control
system of the generator, more precisely the exciter and
the governor (Machowski et al., 2008). If the action of
the control system is ignored, they become fixed system
parameters. The remaining quantities, in particular the
time constants T and the reactances X, are regarded as
constant system parameters.

We note that detailed models can also include sub-
transient effects yielding a sixth-order model (Machowski
et al., 2008). Furthermore, dynamical models can be re-
formulated as adaptive networks (Berner et al., 2021) or
port Hamiltonian systems (Fiaz et al., 2013; Mehrmann
et al., 2018), which enables further insights and general-
izations.

5. A single generator coupled to an infinite busbar

First basic insights into power system stability can be
obtained by focusing on the dynamics of a single gener-
ator (Machowski et al., 2008, Chapters 5.3-5.5). To this
end, we assume that the generator is connected to a huge
system and that the influence of the generator on that
system is negligible. Such a setup is commonly referred
to as an ’infinite busbar’ with a fixed voltage Vs. We
carry out the calculation in the reference frame of the ro-
tor, and recall that the angle between the rotor and the
stator frame is denoted by δ. Hence, the system voltages
at the infinite busbar is written as

Vsq = Vs cos(δ), Vsd = −Vs sin(δ). (59)

The generator is connected to the infinite bus bar through
a set of grid elements, modeled as series impedances.
First, there may be internal losses or a leakage in the ma-
chine which is described by the impedance Rl+iXl. Then
there is typically a step-up transformer which we describe
by the impedance RT + iXT , recalling that the pu sys-
tem takes care of voltage levels automatically. Finally,
there are transmission elements with effective impedance
RS + iXS to the system. Typically, resistances can be
neglected since Ohmic losses as well as shunt impedances
are small. Then, the machine EMFs and the system volt-
ages are related by

Vsd = E′d − x′qIq, Vsq = E′q + x′dId,

⇒ Iq =
E′d + Vs sin(δ)

x′q
, Id =

−E′q + Vs cos(δ)

x′d
, (60)

where we have introduced the short-hand x′d = X ′d +
Xl +XT +Xs and x′q = X ′q +Xl +XT +Xs. Neglecting
Ohmic losses, the air-gap power acting on the machine
equals the real power at the system terminal end

P̃el = VsqIq + VsdId (61)

= E′dId + E′qIq + (x′d − x′q)IdIq

=
E′qVs

x′d
sin(δ) +

E′dVs
x′q

cos(δ)− V 2
s

2

x′q − x′d
x′qx
′
d

sin(2δ).

We have thus found explicit expression for the quantities
P̃el, Iq and Id in terms of the generator state variables,
closing the equations of motion of Sec. III.C.4.

In the widely used classical model of power grid dy-
namics one neglects transient saliency and thereby the
asymmetry of the rotor geometry in a salient pole ma-
chine, assuming that x′d ≈ x′q = x′. This assumption
simplifies the calculations, as we do not have to separate
the q- and d-axis explicitly but can work with phasors.
The relation of voltages and currents simplifies to

V s = E′ − ix′I ⇒ I =
E − V s

ix′
, (62)
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where the real parts correspond to the q−components
and imaginary parts to the d-components. Writing E′ =
E′e−iφ and V s = Vse

−iδ the real power simplifies to

P̃el = <(V sI
∗) =

E′Vs
x′

sin(δ − φ). (63)

Finally, we recall that in the second order model the dy-
namics of the rotor EMFs is fully neglected. Hence, E′

is set to a constant which is chosen to correspond to the
steady state value when the generator provides the power
P + iQ. Then, we have to satisfy the relation

P + iQ = V sI
∗ =

V 2
s − V sE

ix′
(64)

which can be solved for E2 with the result

E2 =

(
Px′

Vs

)2

+

(
Qx′

Vs
+ Vs

)2

. (65)

6. Ohmic loads and the Kron reduction

To understand the operation and stability of extended
power grids, including collective effects, we extend the
model of the previous section to coupled generators. Re-
call that we have to specify the currents and the real
power in terms of the internal EMFs in order to close
the equations of motion summarized in section III.C.4.
To this end, we have to model the loads and we have
to describe the grid explicitly. We formulate Kirchhoff’s
equation in a fixed network frame of reference and work
out the transformation to the reference frames of the ro-
tating machines explicitly. For the sake of simplicity we
will neglect transient saliency here, setting x′d = x′q = x′.
The derivation follows the presentation by (Nishikawa
and Motter, 2015), a mathematical treatment is provided
in (Dörfler and Bullo, 2013).

So, assume that the generator or active nodes are la-
beled as j ∈ {1, . . . , Ng} and the load or passive nodes
are labeled as j ∈ {Ng+1, . . . , Ng+Nl}. For the generator
nodes, we have already discussed the relation between
internal EMFs E′ and the voltage at the system termi-
nal end V in the previous section. The current injection
from internal to terminal end at a node j is given by

I in
j =

E′j − V j
ix′j

. (66)

Load nodes with a given power demand Sj = Pj+iQj are

modeled by a fixed admittance to the ground yground
j =

S∗j/V
2
0 . Then, if the voltage magnitude Vj equals the

reference voltage V0, the load nodes consume the power
V jI

in∗
j = V0 y

ground∗
j V0 = Pj + iQj as desired.

For each node j ∈ {1, . . . , Ng + Nl} we then evaluate
Kirchhoff’s current law: The current inflow must equal

the current flowing to the other nodes in the grid:

I in
j =

Ng+Nl∑
k=1

ykj(V j − V k). (67)

We now collect all these linear relations in vectorial form,
defining the vectors and matrices

E = (E′1, . . . , E
′
Ng

)>, I = (I in
1 , . . . , I

in
Ng

)>,

V g = (V 1, . . . , V Ng
)>, V l = (V Ng+1, . . . , V Ng+Nl

)>,

Yi = diag
(

(ix′1)−1, . . . , (ix′Ng )−1
)

Y gr
gg = diag

(
yground
Ng+1 , . . . , yground

Ng+Nl

)
. (68)

Equation (66) and Kirchhoff’s current laws for the gen-
erator and load nodes are thus condensed into the form Yi −Yi 0

−Yi Ygg + Yi Ygl
0 Ylg Yll + Y gr

ll

 EV g

V l

 =

I0
0

 , (69)

where Ygg , Ygl, Ylg and Yll are the respective partitions of
the nodal admittance matrix (14). We can now gradually
eliminate the network voltages, using the third row to
eliminate V l and then the second row to eliminate the
V g. This procedure is referred to as Kron reduction, a
mathematical accounting of this procedure is discussed
in (Dörfler and Bullo, 2013). We finally obtain

Y ′
(
1 + Y −1

i Y ′
)−1︸ ︷︷ ︸

=:Y eff

E = I , (70)

where we defined the short-hand Y ′ = Ygg − Ygl(Yll +
Y gr
ll )−1Ylg. Equation (70) has the same structure as (15),

but the reduced susceptibility matrix Y eff represents an
effective, not the physical network. In summary, Eq. (70)
directly yields the currents and the real power acting on
the machines in terms of the internal EMFs:

I in
j =

Ng∑
k=1

Y eff
jk E

′
k, (71)

P el
j = <(V jI

in∗
j ) = <(E′jI

in∗
j ) =

Ng∑
k=1

<
(
E′jY

eff∗
jk E′

∗
k

)
.

These quantities are given in the network frame of refer-
ence as stated above. To evaluate them for the dynamical
models summarized in section III.C.4, we transfer back
to the rotating frame of reference of each machine via

Ij [network frame] = eiδj (Iqj + iIdj) [machine frame]

E′j [network frame] = eiδj (E′qj + iE′dj) [machine frame].

Solving for the currents in the machine frame yields

Idj + iIqj =

Ng∑
k=1

Y eff
jk (E′qk + iE′dk)ei(δk−δj), (72)
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and the real power acting on the jth machine reads

P el
j = <

(
Ng∑
k=1

Y eff∗
jk (E′jk + iE′jk)(E′qk − iE′dk)ei(δj−δk)

)
.

This expression simplifies considerably for the particu-
larly important case of a second order model. Then
we have E′qj = Ej = const and E′dj ≡ 0. Writing

Y eff
jk = |Y eff

jk |ei(γjk+π/2) we obtain

P el
j =

Ng∑
k=1

|Y eff
jk |EjEk sin(δj − δk − γjk). (73)

7. The structure-preserving model

In the previous section all loads were modeled as con-
stant admittances to the ground and subsequently elim-
inated. Bergen and Hill (Bergen and Hill, 1981) intro-
duced an alternative model for power grid frequency dy-
namics, keeping the load nodes and hence the full net-
work structure. Generator nodes are described as in the
swing equations, setting the magnitude of the EMF to
a constant. The model of load nodes is based on the
observation that the real power consumption typically
increases with frequency, which is written in the form

P el
j (t) = P

(0)
j +

Dj

ωR
δ̇j ⇒ Dj

ωR
δ̇j = P el

j − P
(0)
j . (74)

We thus obtain an equation of motion for load nodes
which is equivalent to the swing equation with a van-
ishing inertia Hj . To close the model, one then has to
express the real power injections P el

j at the generator and
load nodes in terms of the voltage phase angles, recall-
ing that the voltage magnitudes are assumed to be con-
stant. This procedure, which includes the elimination of
the generator terminal nodes, is described in detail in
(Nishikawa and Motter, 2015). The great advantage of
this approach is that the coupling in the resulting equa-
tions of motions reflects the true network structure.

8. Dynamics of power electronic inverters for renewable sources

Renewable power sources are generally not equivalent
to synchronous machines. All photovoltaic power sources
and virtually all wind turbines are connected to the grid
via power electronic inverters. The transition to renew-
able energy supply thus fundamentally changes the dy-
namics of power grids. In particular, the decrease of in-
ertia provided by conventional synchronous machines is
a major challenge for grid stability (Milano et al., 2018).

One generally distinguishes two modes of operation
of power electronic inverters. A grid-following inverter
provides a given amount of electric power adjusting to

the voltage and frequency provided by the grid. Hence,
the operation relies on other resources which are able
to provide a stable voltage and frequency. In contrast,
grid-forming inverters regulate the voltage and frequency
to specific setpoints similar to a synchronous machine.
Mixed modes are also possible in principle, regulating
either voltage or frequency and following the other.

The development and analysis of new types of (grid-
forming) inverters and inverter-based grids is a very ac-
tive field of research. We thus introduce one important
class, the droop-controlled inverter, following (Schiffer
et al., 2014). The basic state variables of such an in-
verter are the EMF magnitude Ej and phase angle δj ,
where j labels the different generators in the grid. The
control system adjusts these state values to maintain the
predefined set values of power and frequency. To this
end, the control system measures the real and reactive
power exchanged with the grid and compares it to pre-
defined set values. In a simple proportional, or droop
control scheme, the frequency control is proportional to
the active power deviation and the voltage control is pro-
portional to the reactive power deviation such that we
obtain the equations of motion

δ̇j = ωd − κact
j

(
Pmes
j − P dj

)
, (75)

TVj Ėj = −Ej + Edj − κrec
j

(
Qmes
j −Qdj

)
, (76)

where the superscript ·mes indicates the measured values
of real and reactive power and the superscript ·d stands
for desired values. Naturally, the desired frequency ωd is
unique across the grid, whereas the desired voltages Ed

j

may differ. The parameters κact
j and κrec

j are the droop
gains for the frequency and voltage, respectively. The
measurements are not instantaneous and characterized
by a low-pass filter such that TjṖ

mes
j = −Pmes

j +P el
j and

TjQ̇
mes
j = −Qmes

j + Qel
j . The recovery time of voltage

dynamics is typically much lower than the time constant
Tj of the low-pass filter. We thus simplify the model by
setting TVj = 0, obtaining (Schiffer et al., 2014)

δ̇j = ωj , (77)

Tjω̇j = −ωj + ωd − κact
j

(
P el
j − P d

j

)
, (78)

TjĖj = −Ej + Ed
j − κrec

j

(
Qel
j −Qd

j

)
. (79)

The real and reactive power exchanged with the grid, P elj
and Qelj , depend on the state of all elements in the grid.
To close the equations of motion, one thus has to specify
the network equations. Modelling all loads by constant
impedances to the ground as in section III.C.6, we find

P el
j + iQel

j =

Ng∑
k=1

E′jY
eff∗
jk E

′∗
k , (80)

where Ej = Eje
iδj (cf. Eq. (71)).
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9. Aggregated dynamical model

The classical model describes the dynamics of power
systems as coupled second order rotators with each node
representing one synchronous generator. Notably, simi-
lar equations of motion emerge on much coarser spatial
scales (Filatrella et al., 2008; Joe H. Chow (Ed.), 2013;
You et al., 2004; Zhang et al., 1997), emphasizing the
generality of the coupled rotator model.

The dynamical model introduced in (Filatrella et al.,
2008) considers the aggregated dynamics of regions la-
beled by n ∈ {1, . . . , N}. If the internal coupling is suf-
ficiently strong, we take the phase angle to be constant
throughout the region. Again, we measure the phase and
frequency relative to a frame rotating at reference grid
frequency ωR writing φn(t) = ωRt+δn(t). The equations
of motion for the δn(t) are obtained from energy conser-
vation. Each region stores kinetic energy in the rotation
of all synchronous machines,

Ekin
n =

Jn
2

(φ̇)2, (81)

where Jn is the aggregated moment of inertia. At each
node a power P in

n is injected by generators or withdrawn
by consumers and some energy will be dissipated at a
rate P diss

n = ηn(φ̇n)2. Assuming a constant voltage mag-
nitude, the real power transmitted from a region n to a
region m is determined by the phase difference

P trans
n→m = Knm sin(δn − δm), (82)

neglecting Ohmic losses. Knm is an aggregated quantity,
summing over all lines connecting the two regions n and
m. Then, the energy conservation for region n gives

P in
n =

dEkin
n

dt
+ P diss

n +
∑
m

Pn→m . (83)

Noting that |δ̇| � ωR in the vicinity of the normal op-
eration, we simplify the expression for the change of the
kinetic energy, dEkin

n /dt ≈ ωRJnδ̈n, and the dissipated
power, P diss

n ≈ ηω2
R + 2ηnωRδ̇n. Substituting these re-

sults into the energy conservation law (83) then directly
yields the equations of motion

ωRJnδ̈n + 2ωRηnδ̇n = P eff
n −

∑
m

Knm sin(δn− δm), (84)

where P eff
n = P in

n −ω2
Rηn. Eqs. (84) have the same struc-

ture as the classical second order model, but describe
the dynamics on a coarser level. The above derivation
is based on elementary energetic arguments, but similar
results can also be obtained via model reduction (Joe H.
Chow (Ed.), 2013; You et al., 2004; Zhang et al., 1997).
This emphasizes the generic nature of coupled rotator
models in network science.

FIG. 4 Load Frequency Control-Scheme according to
ENTSO-E (UCTE Operations Handbook, 2009).

D. Load frequency control

A power grid itself does not store energy, so the gener-
ated power must match the demand and the losses at all
times. A hierarchy of control systems exists to maintain
this balance, which we introduce starting from the swing
equation (47). As before, we use a rotating frame of ref-
erence, such that ωi = δ̇i denotes the deviation from the
nominal grid frequency ωR,

JiωRω̇i +DiωRωi = Pmech
i − P el

i . (85)

In normal operation, all machines i ∈ {1, . . . , N} in a grid
run in synchrony at the same frequency, a fact that we
will discuss in more detail in section VI. We thus focus
on the bulk frequency and define

ω̄(t) = J̄−1
N∑
i=1

JiωRωi(t) with J̄ =

N∑
i=1

JiωR. (86)

In many studies, the damping is assumed to be propor-
tional to the inertia of a machines (cf. the supplement of
ref. (Motter et al., 2013)). Setting Di = ηJi we obtain

J̄ ˙̄ω + ηJ̄ω̄ = ∆P, (87)

where ∆P =
∑
i P

mech
i −P el

i is the power balance in the
entire grid. We thus see that the power balance directly
drives the dynamics of the bulk: A scarcity of generation
leads to a decrease, while an overgeneration leads to an
increase of the frequency. As the frequency can be mea-
sured rather easily, it is used to control the generation.

Different control mechanisms are distinguished accord-
ing to different time scales they act on and different pur-
poses they serve. (i) The momentary reserve is provided
by the inertia of synchronous machines. The higher the
inertia J̄ , the slower the grid frequency reacts to a power
imbalance. This reaction rate is referred to as the Rate
of Change of Frequency (RoCoF) in the engineering lit-
erature. Notably, renewable power sources with power
electronic inverters have no intrinsic inertia, such that
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frequency stability is an important challenge in the en-
ergy transition (Milano et al., 2018).

(ii) Next, the power imbalance is reduced by increas-
ing or decreasing the generation of specific control power
plants, or, more recently, battery electric storage systems
(Fleer and Stenzel, 2016). According to the guidelines of
the ENTSO-E (UCTE Operations Handbook, 2009), pri-
mary control is activated as soon as the frequency leaves
a small dead band around ωR and must be fully avail-
able within 30 seconds. Up to the dead band, the power
is adapted proportional to the frequency deviation,

PPRL,i(t) = −κiωi, (88)

where the parameter κi describes the sensitivity of pri-
mary control for the grid area i. Primary control stabi-
lizes the frequency, but does not restore the nominal grid
frequency, which can be seen by adding primary control
to the equation of motion (87). For a constant power
imbalance ∆P and a single area we find the fixed point

ω̄ =
∆P

κ+ ηJ̄
. (89)

Damping terms ∝ Di in Eq. (85) affect frequency dy-
namics similar to primary control ∝ κi, which is often
directly included in the swing equation (cf. Sec. III.C.1).

(iii) Secondary control restores the nominal grid fre-
quency ωR and reduces unscheduled power flows be-
tween different grid areas on time scale of minutes. Con-
trol power plants adapt their generation according a
proportional-integral (PI) law (Böttcher et al., 2020),

PSRL,i(t) = −

κPGi(t− τ) + κI

t−τ∫
−∞

Gi(t
′)dt′

 , (90)

with κP and κI being tunable gain factors. The local
area-control-error Gi is a measure of the power that is
missing in area i. It is determined by the difference be-
tween the expected primary control power and the devia-
tions ∆Fi of the power flow to neighbouring control areas
as Gi = κiωi − ∆Fi. Note, that while the PI controller
is linear, the local area-control error Gi depends nonlin-
early on the system state. The finite time delay τ in the
control (90) results from the time required for the mea-
surement of Gi, communication and the adaption of the
control power generation. The secondary control requires
to measure local area-control-errors Gi with a cycle time
between 2 to 5 seconds (UCTE Operations Handbook,
2009). The delay time τ can therefore be expected to be
of similar magnitude, but may vary in different control
areas and with time (Böttcher et al., 2020).

(iv) Tertiary control power is invoked on even longer
timescales. In Europe, the tertiary control power must
be activated within at most 15 minutes. Tertiary control
is operated partly manually and mostly used to restore
the automatic control reserve.

IV. POWER GRID TOPOLOGIES AND DATASETS

The previous sections introduced the various compo-
nents of power grids, in particular power lines and various
producers and consumers at the nodes. In order to derive
a model of a complete power grid, the missing ingredi-
ent is the topology, that is, how these components are
connected. Besides studying concrete examples of real
power grids, it is also desirable to obtain plausible syn-
thetic networks, to allow a more systematic study of the
impact of topological features on dynamical properties.

A. General aspects

Large power grids, especially at the continental scale,
operate at many different voltage levels. Long-range
transmission is achieved through high voltage connec-
tions in order to minimize losses. In Central Europe for
example, the transmission grid operates at 220 kV and
380 kV. The regional distribution is then achieved by
grids at successively lower voltages, connected to the high
voltage transmission grid at substations (transformers).
Typical voltage levels in Europe range from high volt-
ages (60 kV, 110 kV) over medium voltages (3-30 kV) to
low voltages (230V, 380V). Typical line parameters for
transmission grids are summarized in table I.

Grids at these different voltage levels are constructed in
very different ways and with different trade-offs and goals
in mind and thus exhibit different network topologies. A
low voltage distribution grid is typically organized as a
tree graph, in this context called a radial design. While
loops might physically exist, there often is a switch in-
terrupting them. We remark that only if a line fails, the
loop is closed to resume supply downstream of the failure.

High voltage transmission grids require uninterrupted
operation even in cases where a line fails (N − 1 crite-
rion). This implies that the network is meshed, i.e. it
contains loops. An example of such a topology is shown
in Fig. 5. Medium voltage grids often fall in an interme-
diate regime, with varying amounts of meshing.

From a network science perspective a notable aspect
of power grids is that they are geographically embedded.
That is, nodes and lines have geographical locations and
lengths. Line crossings are possible, but are rare. These
aspects are reflected in the connectivity or topology of
the network, putting them in a different class than the
ensembles typically studied in network science.

Further, as infrastructure has costs, they typically also
contain as few lines as possible. As a consequence, power
grids are typically sparse. The observed average degree
for transmission grids falls between 2 and 5, and the de-
gree distribution peaks between two and three, and has
an exponential tail (Solé et al., 2008; Wang et al., 2010).
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FIG. 5 Topology of a high voltage power grid (Coffrin et al.,
2014), visualized using the methods of (Cuffe and Keane,
2015), by Paul Cuffe, CC BY-SA 4.0, Wikimedia.

B. Network ensembles and synthetic grid models

The statistical physics of networks often considers en-
sembles of networks to map out typical topological prop-
erties and to provide a reference class for actual real-
world data sets. Power grids do not fully resemble any
of these common network ensembles. In particular they
are not well captured by small-world networks (Cotilla-
Sanchez et al., 2012). Though the clustering coefficient
is similarly high, there is a much more pronounced con-
nectivity at large scales. A Watts-Strogatz small-world
network of such a low degree would very likely end up
being disconnected for moderately sized networks, and
the non-local links in power grids tend to be much more
clustered (Wang et al., 2010).

In order to capture the full topological structure of
power grids, we need to define novel network ensembles:
probability distributions on the space of networks that
capture the notion of, what looks like a power grid and
what does not. This is typically done by specifying a ran-
dom process that produces networks, either by rewiring
links or by iteratively growing networks. Given such an
embedded topology, typical power line parameters can
then be used to derive the power grids properties I.

In (Wang et al., 2010) a rewiring based process was
proposed with the aim to stay close in spirit to the con-
struction of small world networks, while taking some spe-
cific identified properties of power grids into account. In
contrast, growth based models, starting with (Schultz
et al., 2014b) grow the grid with random node place-
ments and new connections. The model of (Schultz et al.,
2014b) mimics the trade off between global resilience and
economy in the growth process, and is able to recreate the
exponential degree distribution. Having these trade-offs
explicitly allows, for example, to study trade-offs of dy-

fn [Hz] Vn [kV] r [Ω/km] x [Ω/km] bc [µS/km]
50 (UK) 400 0.018 0.265 5.36

230 0.05 0.488 3.371
50 (DE) 380 0.03 0.246 4.335

220 0.06 0.301 3.927
60 (USA) 345 0.037 0.367 4.518

500 0.028 0.325 5.2
765 0.012 0.329 4.978

TABLE I Typical parameters of overhead transmission lines
at different voltage levels for the United Kingdom and the
USA according to (Kundur, 1994; Machowski et al., 2008)
and for Germany according to (Oeding and Oswald, 2016).
Ohmic resistance, susceptance and charging capacity are pro-
portional to the length of the line and are given per km.

namic and structural stability in (Plietzsch et al., 2016).
A growth model for hierarchical networks is proposed and
analyzed in (Ódor and Hartmann, 2018).

Reference (Soltan and Zussman, 2016) considers node
placement in addition to line generation. It considers
average path length, clustering coefficient, the slope of
node degree distributions and the line length distribu-
tions and shows that their algorithm matches those in
various North American power grids.

In these models the growth process makes use of topo-
logical and embedding information, but does not consider
the resulting energy flows in the growth stage. Birch-
field et al. (2017, 2018) add consideration of power flows
in DC approximation and voltage profiles to the itera-
tive growth of synthetic grids. In (Soltan et al., 2018)
the growth process is fitted by using a Gaussian mixture
model. Espejo et al. (2018) present a model that focuses
instead on historical plausibility of the growth process
and economy vs. robustness trade-offs.

Besides generating topologies from scratch, it is also
possible to take an existing topology and vary it while
keeping many aspects of it fixed. Such surrogate ensem-
bles for spatial infrastructure networks were described in
(Wiedermann et al., 2016). A difficult open question is
to find a fully satisfactory model for the co-generation of
a variety of networks (Hackl and Adey, 2018), or hierar-
chies of networks (Schultz et al., 2016).

C. Network datasets

The availability of real grid data is limited. Thus, a
variety of test cases has been compiled for scientific use.
Some are based on available data of real world grids.
Some are synthetic, trying to mimic structural properties
of real-world grids. In the following, we list resources
which provide grid data, without claim of completeness.

• The classical IEEE test cases are probably the most
heavily studied power grids at all, some having been
implemented decades ago. The datasets are partly

https://commons.wikimedia.org/w/index.php?curid=70226122
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synthetic and partly derived from real grids and
can be obtained at the repository (Christie, 1999).

• Several online repositories have been created in re-
cent years to provide larger, more diverse and more
recent test cases, focusing on transmission grids
(Amro M. Farid et al., 2019; Birchfield, 2016; Pa-
cific Northwest National Laboratory and National
Rural Electric Cooperative Association, 2017) or
distribution grids (’feeder’) (K. P. Schneider et
al., 1991; Kavasseri and Ababei, 2021). In addi-
tion, several papers review such repositories and
the methodologies, see e.g. (Birchfield et al., 2017;
Coffrin et al., 2014; Schneider et al., 2018). Again
these repositories include both synthetic grids and
approximate models of real grids, with a focus on
Northern America. Large test grids with properties
typical for European grids have been provided by
the Pegase project (Villella et al., 2012).

• The IEEE and Pegase test grids are included with
others in the latest version of the popular software
package Matpower (Zimmerman et al., 2011).

• Many test cases are restricted to static properties
and do not include the parametrization necessary
for dynamic simulations. In order to analyze the
dynamics of these systems some heuristic assump-
tions about present or future parameters are nec-
essary. Realistic dynamic test cases mostly come
in form of small synthetic test cases developed by
IEEE, that can be found in repositories (Amro M.
Farid et al., 2019; Pacific Northwest National Labo-
ratory and National Rural Electric Cooperative As-
sociation, 2017). The European Network of Trans-
mission System Operators for Electricity (ENTSO-
E) provides semi-synthetic grid models mimicking
the European grid (Semerow et al., 2015), but ac-
cess is limited. A notable exception is the syn-
thetic model of the North Eastern US published by
(Birchfield, 2016), which includes a 25.000 node dy-
namic system, validated in the sense of (Xu et al.,
2018). A heuristic dynamical parametrization of
the ENTSO-E based system (Wiegmans, 2016)
was recently published in (Pagnier and Jacquod,
2019c).

• Recently, several initiatives started to map out
power grids from publicly available data. A model
of the German power grid was extracted from
Open Street Maps (Medjroubi et al., 2015), and a
model of the European grid was extracted from the
ENTSO-E interactive grid map (Wiegmans, 2016).
A variety of related datasets can be found on the
community websites (Open energy Modelling Ini-
tiative, 2017; Open Power Systems Data, 2017). A
collection of grid frequency time series has been
published in (Gorjão et al., 2020b).

V. DYNAMICS OF ELEMENTARY NETWORKS AND
BUILDING BLOCKS

We introduce basic aspects of power system dynamics
and stability for an elementary grid containing one trans-
mission line. We first consider its static operation and its
limitations before we turn to the dynamic stability.

A. Static solutions and voltage stability

We consider the steady state of an elementary circuit
with one load node and one generator connected by a
single transmission line to understand which factors limit
the power transmission in different types of grids. The
generator s is treated as a slack node, so that Vs = 1
and δs = 0 are fixed (cf. Sec. III.A.3). Most load nodes
draw reactive power Qn at a fixed ratio to the real power,
which is commonly specified in terms of the power factor
cos(ϑ) defined via the relations Pn =

√
P 2
n +Q2

n cos(ϑ)

and Qn =
√
P 2
n +Q2

n sin(ϑ). We here analyze the oper-
ation as a function of the real power demand Pn < 0.

To obtain the voltage magnitude Vn and phase angle
δn at the load node, we then have to solve the AC load
flow Eqs. (25), which are rewritten using the addition
theorems of the sine and cosine

Pn = GnnV
2
n + VnVs

√
B2
ns +G2

ns sin(δn − γns)

Qn = −BnnV 2
n + VnVs

√
B2
ns +G2

ns cos(δn − γns), (91)

where the angle γns is defined via

cos(γns) =
−Bns√
B2
ns +G2

ns

, sin(γns) =
−Gns√
B2
ns +G2

ns

.

We can then separate the equation for the voltage mag-
nitude using sin2 + cos2 = 1 which yields

0 = (B2
nn +G2

nn)V 4
n + (P 2

n +Q2
n)

− (B2
nsV

2
s +G2

nsV
2
s − 2BnnQn + 2GnnPn)V 2

n , (92)

which is easily solved for V 2
n . The phase angle can then

be obtained by solving one of the Eqs. (91).
To understand the behavior of the system and the lim-

itations to power transmission in more detail, we plot
voltage Vn as function of the real power demand |Pn| in
Fig. 6 (a) for different values of the power factor. This
plot is often referred to as the ’nose curve’ in power en-
gineering (Machowski et al., 2008). First, one observes
that the quadratic Eq. (92) can have two solutions, where
only the branch with the higher magnitude is relevant as
the other branch is unstable. Second, power transmission
is generally limited. Physical solutions of Eq. (92) exist
only if the real power demand does not exceed the limit

P 2
n ≤

1

4
B2
nsV

4
s +BnsV

2
s Qn , (93)
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FIG. 6 The nose curve. (a) Voltage at the load node as func-
tion of transmitted power for three different power factors:
tan(ϑ) = +0.3, 0,−0.3 (from left to right). (b) for tan(ϑ) = 0
in the initial state (right) and after half of the connectivity
is lost, i.e. Bns is halved (left). Parameters are Sbase = 100
MW, Vs = 1 pu and Bns = 10 pu. Solid (dashed) lines indi-
cate stable (unstable) solutions of the load-flow equations.

which depends on the reactive power. The limit as well
as the voltage magnitude Vn is lower when the load
draws reactive power (Qn > 0, tan(ϑ) > 0). How-
ever, if the load node supplies reactive power instead
(Qn < 0, tan(ϑ) < 0), the voltage at the load node
can be even larger than Vs and the transmittable real
power is strongly enhanced. Grid operators hence aim
to keep tan(ϑ) small or even negative by supplying re-
active power near the loads – a procedure referred to as
’reactive power compensation’

Let us further consider how a ’voltage instability’ can
arise in elementary power grids. Let us assume that two
parallel transmission lines exist and that one of them is
lost in a contingency situation. As a consequence, the
effective susceptance Bns is halved and the nose curve
contracts as shown in Fig. 6 (b). Further effects depend
on the grid loading. If the real power demand |Pn| is not
too high (e.g. 200 MW in the figure), a solution of the
power flow equations still exists, albeit at a lower voltage.
The consumers will thus experience a rapid drop of the
voltage level. However, if the real power demand is too
large (e.g. 300 MW in the figure), no static equilibrium
solution exists any more and a voltage collapse emerges in
which voltages decline as governed by the power system
dynamics. A comprehensive analysis of voltage stability
in power grids can be found in the text book (Van Cutsem
and Vournas, 2007).

B. Flow and voltage limits

Power transmission in current highest-voltage grids is
typically limited by other factors than the ones discussed
above. Most grids are constantly monitored and thor-
oughly regulated. Security limits have been formulated
for current and voltage (see, e.g., (European Network
of Transmission System Operators for Electricity, 2004))
and emergency shutdowns are carried out when these
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FIG. 7 Factors limiting real power transmission in AC power
grids for two different characteristic cases (blue: Short line
with l = 100 km, dashed red: long line with l = 200 km).
We consider a single transmission line connecting one power
plant to a substation. Shown is the current |I|, the voltage
magnitude |Vn| and the voltage angle δn at the load node as
a function of the real power load Pn. The dotted line shows
the limits Ith and Vlim for the current and the voltage.

limits are violated. Hence, the physical limits of power
transmission are rarely met during normal operation.

In particular, extreme currents can lead to an Ohmic
heating and eventually to a dangerous bending of over-
head transmission lines due to thermal elongation. Dur-
ing the 2003 power outages in North America (U.S.-
Canada Power System Outage Task Force, 2014) and
Italy (Union for the Co-ordination of Transmission of
Electricity, 2004) transmission lines hit trees leading to
a short-circuit fault. Hence, grid operators typically im-
pose ’thermal limits’ for the currents and overloaded lines
switch off automatically. Similarly, upper and lower lim-
its for the voltage magnitude are imposed to guarantee
power quality and avoid the danger of a complete voltage
sack.

To see how these regulations limit power transmission
in highest-voltage grids, we solve the load flow equations
(91) as a function of Pn assuming a fixed power factor,
which is set to a typical value of cos(ϑ) = 0.95 with ϑ >
0. We use typical parameters for a 380 kV transmission
line in Western Europe with r/l = 0.03 Ω/km and x/l =
0.246 Ω/km and a thermal limiting current of Ith = 2.58
kA (Oeding and Oswald, 2016), l being the length of the
line. We use the notation of the previous section, but give
all quantities in physical units for better accessibility.

Figure 7 shows the results for two characteristic cases.
First we consider a transmission line of length of l = 100
km connecting the load node and a generator node, which
has a fixed voltage magnitude Vg = 400 kV slightly above
the nominal voltage level of 380 kV. The current

|Ing| =
∣∣∣∣ |Vn|eiδn − |Vg|

r + ix

∣∣∣∣ (94)

increases approximately linear with transmitted power.
For Pn ≥ 1.61 GW the current exceeds the thermal line
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limit, which would lead to emergency measures, whereas
the voltage magnitude stays well above the lower limit of
Vlim = 0.9×380 kV. This illustrates that in densely pop-
ulated areas with short lines mainly the thermal limit for
the current limits the operation of a transmission line. In
fact we find a good estimate for the maximum transmit-
table real power by

Pmax ≈ 3
380 kV√

3
× Ith = 1.698 GW. (95)

Voltage stability can be an issue if generators are located
far away from loads. Fig. 7 shows the current and voltage
at the load node for a longer line with l = 200 km. The
voltage limit Vlim is hit already for Pn ≥ 1.01 GW, where
the current is still well below the thermal limit.

Voltage limit violations can be handled to some ex-
tend using reactive power compensation as discussed in
the previous section. Decreasing the power angle ϑ at the
load node allows for a higher power transmission. In con-
trast, the current limit represents a more severe limita-
tion. A rather simple way to extend power transmission
is dynamic line rating, where the thermal limiting cur-
rent Ith is adapted to the ambient conditions (Douglass
and Edris, 1996). On cold, windy days a higher current
is acceptable without risking an overheating.

C. Dynamic stability

1. Local stability of a single generator

We now turn to the question of dynamical stability,
starting with the most elementary setup: a single gener-
ator coupled to an infinite grid. The grid is assumed to
be so large that it is not affected by generator dynamics,
such that its voltage magnitude V and phase angle φ are
fixed. We here consider the question of angular stability
and thus assume that the generator voltage is constant
at the steady state value E◦. If the phenomenon of volt-
age collapse occurs, voltages drop dynamically such that
a more refined treatment is necessary.

Assuming a lossless connection of the machine to the
grid with the susceptance x, the real power flow from the
machine to the grid is given by Pel = K sin(δ − φ) and
the swing Eq. (49) reads

2H

ωR
δ̈ +Dδ̇ = Pmech −K sin(δ − φ), (96)

where K = V E◦/x is an effective coupling strength. In
normal operation the machine rotates with the frequency
ωR and a fixed phase difference to the grid to supply a
constant real power. Hence we are interested in the fixed
points of the Eq. (96) given by

δ◦ = φ± arcsin (Pmech/K) . (97)

FIG. 8 The tilted washboard potential (98) as a mechanical
analog to the dynamics of a single generator in the 2nd order
model for (a) Pmech = 0.1K, (b) Pmech = 0.5K, (c) Pmech =
0.9K, (d) Pmech = 1.1K. The potential Veff is given in units
of K. Green disk indicate stable fixed points, red crosses
indicate saddle points.

One finds that the +-solution is linearly stable, while the
other branch is unstable. The solutions vanish in a saddle
node on a circle-bifurcation when Pmech = Pcrit = K.
Hence, the power the machine can receive and transmit
to the grid is limited to a maximum value of Pcrit.

The nature of this bifurcation becomes more obvious
by a mechanical analog. Consider a point particle with
effective mass meff = 2H/ωR and friction coefficient η =
D moving in a tilted washboard potential

Veff(δ) = −Pmechδ −K cos(δ − φ), (98)

where δ denotes the particle position. Then, Newton’s
equation for the particle, meff δ̈ = −ηδ̇ − ∂Veff/∂δ, is
equivalent to the swing Eq. (96). The tilted washboard
potential is shown in Fig. 8 for different values of tilting
Pmech. For low tilting, stable/unstable fixed points exist
in the local minima/maxima of the potential (green and
red dots). As the tilting increases, minima and maxima
approach each other and finally vanish for Pmech > Pcrit.
The tilted washboard potential has been studied in great
detail in statistical physics, in particular in the presence
of noise, see (Risken, 1996) and references therein.

2. Bifurcations

To obtain a comprehensive understanding of the dy-
namics of a single generator, we also analyze its global
stability properties. Given an initial state δ(0), δ̇(0), what
happens for long times? Does the generator relax to the
stable fixed point discussed above?

A global phase space portrait of the single machine sys-
tem is shown in Fig. 9 for different values for Pmech/K.
One observes that in most cases a limit cycle exists, which
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FIG. 9 Basin of attraction (red) of the stable fixed point of

Eq. (96), in the δ - δ̇ plane. Parameters are 2H
ωR

= 1, D = 0.3,

K = 8 and A) Pmech = 1, B) Pmech = 2, C) Pmech = 4, D)
Pmech = 9. The white dots are the stable and unstable fix
points. The black line gives the limit cycle.

corresponds to a desynchronized generator. The genera-
tor cannot exchange real power with the grid in this state
as Pel = K sin(δ − φ) is oscillating and averages out to
zero. The mechanical input power accelerates the gen-
erator until this input is balanced by the damping such
that it has a higher frequency than the grid, δ̇ > 0.

We thus find three parameter regions with different
global stability properties, cf. Figs. 9 and 10. For
Pmech/K > 1 no fixed point exists and the system will
always converge to the limit cycle. If Pmech/K is small or
the damping η is large, the system is globally stable: It
converges to the attractive fixed point for almost all ini-
tial states. In the remaining part of the parameter space
the fixed points and the limit cycle coexist such that the
long term dynamics depends on the initial state.

An analytical approximation for the border between
the globally stable and the coexistence regime can be ob-
tained in the low-friction limit using Lyapunov’s second
method (Manik et al., 2014; Parks, 1992; Risken, 1996).

We define an energy functional E = meff (δ̇)
2

2 −K cos(δ),
setting φ = 0 for the sake of simplicity. Using the equa-
tion of motion for δ, we obtain

dE
dt

= meff δ̈δ̇ +K sin(δ)δ̇ = Pmechδ̇ − η(δ̇)2. (99)

If E decreases on average for all initial conditions, the
system is in the globally stable regime. The condition
for the border between the globally stable and the coexis-

tence regime is therefore obtained by setting dE/dt
T

= 0,
where the bar denotes the average over one period T .
Evaluating this condition yields

Pmechδ̇
T

= η(δ̇)2
T

. (100)

FIG. 10 Stability map of a single generator coupled to an in-
finite grid in the 2nd order model. Three different parameter
regions exist: A globally stable fixed point, a globally attrac-
tive limit cycle and a region of coexistence of fixed point and
limit cycle. Bifurcations between these regions are shown as
colored lines. The red dashed line is the approximation (102)
for low friction. See (Manik et al., 2014; Risken, 1996) for a
more detailed analysis.

We can now calculate δ̇
T

= 2π/T and

(δ̇)2
T

=
1

T

∫ T

0

(δ̇)
2
dt =

1

T

∫ π

−π
δ̇dδ

=
1

T

∫ π

−π

√
2

meff

√
E(δ, δ̇) +K cos(x) dδ. (101)

At the bifurcation, when a globally stable fixed point
loses stability, there is a trajectory which satisfies δ̇ = 0
at each successive peak of the potential landscape. This
trajectory has Epeak = K, which can be assumed to be

constant in the low friction limit. Replacing E(δ, δ̇) ≈ K,
the integral in (101) can be evaluated in closed form and
the border between the globally stable and the coexis-
tence region (100) is given by

Pmech =
4η
√
K

π
√
meff

. (102)

This approximation matches the results from a direct
numerical evaluation for small values of η as shown in
Fig. 10. For large values of η it slightly overestimates the
globally stable parameter region.

3. Probabilistic stability measures

Elementary systems allow for a comprehensive under-
standing of the bifurcation structure and global stability.
However, this approach is no longer feasible for high-
dimensional networked systems, such that more versatile
methods are needed. Recently, probabilistic approaches
have gained strong interest (Menck et al., 2013). For in-
stance, one can quantify the stability of a dynamical sys-
tem by the probability of returning to the desired fixed
point after a random perturbation. The set of all initial
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states guaranteeing convergence, the basin of attraction,
is shown in Fig. 9 for a single generator and different
system parameters. While the geometry of the basin
can be rather intricate in higher dimensions, its size is
easy to measure by randomly drawing a sufficient num-
ber of initial states from a predefined set A and numeri-
cally simulating their dynamics. Then, it is the same as
Monte-Carlo integration of the indicator function 1B on
the basin of attraction:

P̂ = P(x(∞) = x∗|x(0) ∈ A) =
1

|A|

∫
A

1B(x)dx. (103)

Different aspects of stability can be understood by choos-
ing an appropriate set A. For instance, restricting per-
turbations to a single node reveals weak spots in the grid
(Menck et al., 2014).

The process of sampling such a probability is a
Bernoulli process. Its sampling uncertainty decreases
with the number of samples N , which is asymptotically
given by the binomial confidence interval

P̂ ±
√
P̂(1− P̂)/N . (104)

though better estimates are possible for small values of N
(Agresti and Coull, 1998). Most importantly, the number
of samples needed does not increase with the dimension of
the problem, whereas the individual samples are typically
more expensive to obtain.

The asymptotic convergence to a fixed point is an im-
portant aspect of stability, but it is not sufficient in the
context of power grids. One can generalize the current
approach, requiring that a trajectory does not exceed cer-
tain operational limits, or equivalently, that it does not
not leave a ‘survival’ region S. This leads to the defini-
tion of the survivability (Hellmann et al., 2016)

P(x(t) ∈ S ∀ t|x(0) ∈ A). (105)

Survivability requires the specification of a survival re-
gion S, as shown in Fig. 11 for a single generator, assum-
ing that the survival region is given by |δ̇| ≤ ±5 rad/s.
This assumption is useful in the study of power grids,
as generators have many protection circuits, that would
switch them off to avoid mechanical damage. Probabilis-
tic measures have also been generalized to cover the case
of repeated perturbations and stochastic systems (Lind-
ner and Hellmann, 2019; Schultz et al., 2018). Further-
more, the uniform sampling from the set A can be re-
placed by more general distributions of initial states.

4. Stochastic stability

Up to now, we have analyzed the stability of the swing
equation for fixed system parameters. But real-world
systems will typically face disturbances and noise. How
does this affect the stability of the system?

FIG. 11 Survivability region (red) of the stable fixed point
of Eq. (96), with survival region given by the region between

the lines δ̇ = ±5 rad/s. The basin of attraction of 9 is shaded
in (orange). Parameters are 2H

ωR
= 1, D = 0.3, K = 8 and A)

P = 1, B) P = 2, C) P = 4, D) P = 9. The white dots are
the stable and unstable fixed points. The black line gives the
limit cycle.

We now analyze how the stability of the swing equa-
tion (96) is affected if the mechanical input power of a
machine fluctuates in time as

Pmech(t) = P̄ + ξ(t). (106)

Notably, this problem can be solved almost fully ana-
lytically in the case of white noise ξ(t) using Kramers’
escape rate theory (Risken, 1996). Using the analogy to
a particle moving in a tilted washboard potential (98),
the main question is: Can the particle overcome the po-
tential barrier and thus escapes the vicinity of the stable
fixed point as illustrated in Fig. 12 (a,b)? What is the
probability for such a desynchronization event?

Kramers’ theory gives the average time τ̄ until a par-
ticle escapes (van Kampen, 2007; Schäfer et al., 2017)

τ̄ =
2π%√

V ′′eff (δmin) |V ′′eff (δmax) |
exp

(
2η∆Veff

σ2

)
, (107)

where σ2 is the variance of the Gaussian white
noise, η = D the effective friction and 2% = η +√
η2 + (8H/ωR)|V ′′eff (δmax) | for intermediate damping.

The quantities V ′′ (δmin,max) are the second derivatives of
the potential evaluated at the local minimum and maxi-
mum δmin,max, respectively, and

∆Veff = Veff(δmax)− Veff(δmin) (108)

is the potential barrier that the particle has to overcome.
Numerical simulations show an excellent agreement with
this prediction as shown in Fig. 12(c).

Kramers’ formula (107) reveals how the system param-
eters affect the stability. The main factors are noise
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FIG. 12 Desynchronization of the swing equation due to a
fluctuating power input. (a,b) When the input power Pmech

fluctuates, the generator can lose synchrony to the grid after
an escape time τ . (c) Kramer’s escape rate theory predicts
the escape process for Gaussian white noise. The theoretical
prediction, (107) (black lines) well predicts the mean escape
times τ̄ obtained from direct numerical simulations averaged
over 2000 sample processes (symbols). Results are shown for
an extremely loaded connection with K = 1 and¯̄P = 0.95 and
a damping coefficient of D = 8×10−5 s−1×ωR (intermediate
damping). Figure reproduced from (Schäfer et al., 2017).

strength σ, damping parameter D and potential bar-
rier ∆Veff , which enter Kramers’ formula exponentially.
In contrast, τ̄ depends less sensitively on the inertia H
which enters only algebraically.

The barrier is determined by the effective tilting of
the potential, i.e. the loading of the grid and vanishes
as P̄ → Pcrit. Fig. 12 demonstrates the escape process
for an extreme load, whereas τ̄ is longer by orders of
magnitude for realistic loading levels. However, τ̄ can
be drastically reduced if the noise is no longer Gaussian
but intermittent which is typical for wind power systems
(Schmietendorf et al., 2017). In larger power grids, dif-
ferent escape routes can exists, corresponding to different
parts of the grid loosing synchrony (Schäfer et al., 2017).
In section VIII.D we will reconsider the stability of the
swing equation under several generalizations.

VI. SYNCHRONIZATION AND STEADY STATES IN
COMPLEX GRIDS

A. The need for synchrony

The stable steady operation of a power grid re-
quires perfect phase-locking of all synchronous machines
throughout the grid (Dörfler et al., 2013; Motter et al.,
2013; Rohden et al., 2012). That is, all machines in a con-
nected network have to run at the same frequency with
a well defined phase difference between them – otherwise
no steady power flow is possible. From Eq. (73) we find
that, if the nodes operate at their nominal voltage am-
plitude Ej = 1 , the real power flow between two nodes
j and k is determined by their phase difference

Pi→j = Kij(sin(γij) + sin(δi(t)− δj(t)− γij)), (109)

where Y eff
ij = Kije

i(γij+π/2) is the effective nodal admit-
tance and the term sin(γij) comes from the diagonal of
Y eff . The same expression is used for the aggregated
model introduced in section III.C.9 with γij = 0.

Under fault conditions, a fast transient instability can
occur where a group of machines accelerates relative to
the others. Then the relative phases δi,j(t) between the
groups are no longer locked and there is no steady power
flow Pi→j . If the fault clears, another transient may ei-
ther diverge or converge. Transient instabilities on time
scales of cycles typically lead to the shut down (“trip-
ping”) of both transmission lines and generators.

Furthermore, violations of perfect phase-locking are
observed during ’inter-area oscillations’, where electric
power oscillates across the grid at low frequencies of
0.1 Hz - 10 Hz (Klein et al., 1991; Rogers, 2012). Inter-
area oscillations occur repeatedly after disturbances such
as the loss of a generator and are typically damped out
in minutes. However, oscillations may also grow in ex-
ceptional cases, eventually leading to a system split or
blackout. For instance, a cascade of failures led to the
tripping of several transmission lines and the loss of the
stable steady state during 2006 European power outage
(Union for the Coordination of Transmission of Electric-
ity, 2007). Oscillations grew rapidly and finally the grid
separated into three mutually asynchronous areas.

We are thus led to a fundamental question of power
system stability: Do the equations of motion admit a
stable solution where all nodes are perfectly phase-locked,

δj(t) = Ωt+ δ◦j , for j ∈ {1, . . . , N}, (110)

given the network topology and the power injections?
Synchrony is about phase dynamics, therefore it is nat-
ural to focus on the phases as dynamic variables in the
following. To simplify the analysis, we will neglect volt-
age dynamics for the time being and assume that the
phase dynamics at the nodes is well described by the
swing equation (49). As discussed in the previous sec-
tions, this equation is very generic and arises similarly
for single synchronous machines, grid-forming inverters
with power control and aggregated dynamical models.
Absorbing the various factors in front of δ̈i and δ̇i into
reduced inertia Ji and damping Di coefficients, the cen-
tral equation in question then reads

Jiδ̈i = Pi −Diδ̇i −
∑
j

Kij(sin(γij) + sin(δi − δj − γij)).

(111)
The general problem of synchronization and dynamical
stability with voltage dynamics is more involved, and we
will present a short outlook at the end of this section.

Versions of this model have also been studied in the
theoretical physics literature under the name second or-
der Kuramoto model, cf. (Rodrigues et al., 2016, Chap-
ter 7). However, it should be noted that different aspects
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of synchronization have traditionally attracted more at-
tention in theoretical physics. Starting from the seminal
work of Kuramoto (Kuramoto, 1975) many researchers
have investigated the transition from incoherence to par-
tial synchronization, where some nodes lock their fre-
quencies. This is clearly not sufficient for power systems.
Furthermore, many essential results on partial synchro-
nization have been obtained in a large-N mean-field limit.
A generalized large-N limit for complex networks and the
problem of full synchronization has been treated only re-
cently in (Kuehn and Throm, 2019).

B. Linear Stability of the phase dynamics

We begin by assuming that a solution to the static
equations is given. Then, we study whether its phase
dynamics is stable to small perturbations. Consider a
small perturbation around the synchronous fixed point,
δi(t) = Ωt + δ◦i + αi(t). To linear order perturbations
evolve according to

Jiα̈i = −Diα̇i −
N∑
j=1

Λijαj (112)

with the matrix Λ ∈ RN×N defined as

Λij =

{
−Kij cos(δ◦i − δ◦j − γij) if i 6= j∑
n 6=iKin cos(δ◦i − δ◦n − γij) if i = j.

(113)

The fixed point is linearly stable if all perturbations α
are damped. We note that power grid synchrony is not
affected if all angles δi are shifted by a constant. Thus,
this mode is excluded from the stability analysis. One
can show that stability is primarily determined by Λ:
The synchronous state is linearly stable if all eigenval-
ues of Λ are positive, except for the one corresponding
to a global shift of all phases. This criterion becomes
especially simple if line losses can be neglected. Then
γij = 0 and Λ is a weighted, symmetric Laplacian ma-
trix, cf. section II. Stability is guaranteed as long as the
’weights’ Kij cos(δ◦i − δ◦j ) are positive for all links (i, j),
i.e. if no line is overloaded,

|δ◦i − δ◦j | < π/2. (114)

This criterion is sufficient, but generally not necessary. It
can be viewed as a generalization of the stability criterion
for a single generator discussed in section V.C.1.

The situation becomes more involved when line losses
can not be neglected. The condition |δ◦i −δ◦j −γij | < π/2
is then not sufficient and more subtle necessary condi-
tions were derived (Skar, 1980). Further effective crite-
ria for the definiteness of signed Laplacians were given
in (Chen et al., 2016; Song et al., 2015). Lyapunov ex-
ponents and vectors for this system have been studied
in (Bosetti and Khan, 2017). It should be noted that

phase differences in transmission grids are typically much
smaller. Other factors limit power transmission, at least
for short transmission lines (cf. Fig. 7).

Stability can be lost if a parameter of the network is
varied, e.g. if power injections and grid loads increase
or transmission lines fail (Coletta and Jacquod, 2019).
Eventually, the second Laplacian eigenvalue tends to zero
and the fixed point is lost in an inverse saddle-node bi-
furcation on a circle (Manik et al., 2014). Notably, bifur-
cation sets and linear stability properties become much
more intriguing if voltage dynamics is included (Ma et al.,
2016; Schmietendorf et al., 2014; Sharafutdinov et al.,
2018), or in inverter based grids (Schiffer et al., 2014).
An overview of different aspects of dynamical stability is
provided in (Gajduk et al., 2014a).

C. Existence, multiplicity and properties of synchronous
states

We now turn back to the question whether a stable
synchronous state exists for a given power grid. We first
review some important properties of synchronous states
and then review a theoretical approach to systematically
compute and classify all such states.

1. Properties of synchronous states

The proper operation of a power grid requires perfect
phase locking according to Eq. (110). Substituting into
the equations of motions (111) yields the fundamental
condition for the phases and active power flows in the
synchronous state of a power grid,

0 = Pi−DiΩ−
∑
j

Kij(sin(γij)+sin(δ◦i−δ◦j−γij)). (115)

We note that the flows are asymmetric for γ 6= 0 due
to Ohmic losses. In fact, one can express the losses at a
transmission line (i, j) as

P loss
ij =Pi→j + Pj→i = 2Kij sin(γij)

[
1− cos(δ◦i − δ◦j )

]
.

Losses vanish when γij = 0 and when there is no power
flowing on the line, i.e. when δ◦i = δ◦j .

Synchrony does not necessarily imply that the grid
operates exactly that the reference frequency of 60/60
Hz. In fact, we can determine the equilibrium fre-
quency directly from Eq. (115). Summing over all nodes
i ∈ {1, . . . , N} and solving for Ω yields

Ω =

∑
i Pi −

∑
i<j P

loss
ij∑

iDi
. (116)

We recall that the effective parameters Di include both
damping and the action of primary load-frequency con-
trol, such that the current result is equivalent to Eq. (89).
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The deviation from the reference frequency Ω is given by
the ratio of the power imbalance, including losses and the
cumulative primary control strength. We will come back
to the analysis of the bulk frequency in section VIII.A.

2. Phase cohesiveness and necessary conditions

We are particularly interested in synchronous states
where angle differences are small, cf. the discussion in
section V.A. Small angle differences are also essential for
many analytic results on the stability of the swing equa-
tion, cf. for example the linear stability condition (114).
To state this aspect more precisely we define the cohe-
siveness: A state is called phase cohesive if all phases δ◦i
lie in an arc of length ζ ∈ [0, π/2) denoted as A(ζ).

The definition can be applied to derive necessary con-
ditions for synchronization. For the sake of simplicity,
assume that the power in the grid is balanced and that
we have no losses

∑
i Pi = 0, γij = 0. Hence, we have

Ω = 0 in Eq. (110) and the condition for phase locking
in the second-order power grid model (111) reads

Pi =

N∑
n=1

Kin sin(δ◦i − δ◦n). (117)

For a phase cohesive sync state, the magnitude of the
sum can be bounded from above by sin(ζ)

∑
nKin such

that Eq. (117) can be satisfied only if for all i ∈ {1, . . . , N}

|Pi| ≤ sin(ζ)

N∑
n=1

Kin (118)

Furthermore we can consider any two nodes i, j of the
grid and evaluate the difference of the conditions (117).
Again we can bound the sums on the right-hand side
which yields the condition for all i, j ∈ {1, . . . , N}

|Pi − Pj | ≤ sin(ζ)

N∑
n=1

Kin +Kjn. (119)

The two conditions are necessary for a cohesive sync state
to exist, but they are not sufficient by all means. Never-
theless, they reveal two important facts: (i) Synchroniza-
tion requires a sufficient connectivity of the grid, while a
strong divergence of the Pi impedes synchronization (ii)
If the phase divergence ζ shall be reduced, we have to in-
crease the coupling or decrease the divergence of the Pi.
Further generalizations and refinements are discussed in
(Ainsworth and Grijalva, 2013; Chopra and Spong, 2009;
Dörfler et al., 2013).

3. Existence of solutions and multistability

We now turn to the question whether solutions to the
power flow equations exist. Notably, power grids can ad-
mit multiple stable and unstable states of operation, even

when power injections are fixed. Sudden changes of the
power injections or the grid topology can trigger transi-
tions between theses states with drastic consequences for
grid operation and stability. Circulating power flows can
emerge, which are generally undesired as they increase
line loads and Ohmic losses. A classic example of such
circulating power flows is the Lake Erie loop in North
America (Coletta et al., 2016; Jafarpour et al., 2019). If
the system finds itself in a situation in which no stable
synchronous state exists, system collapse is an inevitable
consequence. We begin with the simplest case of a power
grid without Ohmic losses such that the fixed points are
determined by Eq. (117). The central question is now:
When does this equation have multiple solutions that
correspond to a dynamically stable power flow and why?

We start with an elementary example: a simple ring
network where Pi = 0 for all nodes i ∈ {1, . . . , N}
and homogeneous line parameters K (Schröder et al.,
2017). One can easily verify that the fixed points of
this network are given by δ∗i = 2πim/N with a param-
eter m ∈ {−N/2,−N/2 + 1, . . . ,+N/2}. Fixed points with
m ∈ (−N/4,+N/4) satisfy (114) and are guaranteed to
be dynamically stable, all other fixed points are poten-
tially unstable. This simple example already suggests
the fundamental features of multiplicity of sync states.
Power flow solutions in lossless grids can differ in cycle
flows. In fact, each fixed point corresponds to a flow
f = K sin(2πm/N) around the cycle. The number of sta-
ble fixed points increases with the size of the loop, being
limited to one if N ≤ 4.

Using these insights, we introduce a general method
to construct all (stable) fixed points of a generic lossless
power grid, following (Manik et al., 2017b). The main
idea is to shift the focus from nodes to the edges and
cycles of the network. Hence, we define a vector of flows
on the network’s edges

F = Bd sin(E>δ) ∈ RL, (120)

where E denotes the node-edge incidence matrix (4) and
the sine function is taken element-wise. The steady state
conditions (117) then become

P = EF . (121)

Fixed points are now obtained via a step-wise procedure:
We first construct all solutions of Eq. (121) and then
reject those which are incompatible with Eq. (120).

The first step is based on the following observation:
The kernel of the incidence matrix E corresponds exactly
to cycle flows in the network. Hence, the general solution
of Eq. (121) can be written as

F = F (s) + Cf , (122)

where F (s) ∈ RL is a specific solution, f ∈ RL−N+1 gives
the strength of the cycle flows, and the matrix C is the
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FIG. 13 Multiplicity of sync states: Scaling of the number
stable fixed points in a grid with two cycles. The grid consists
of two rings with (n − 1) nodes sharing one edge, such that
N = 2n. Edge weights are assumed to be homogeneous and
loads vanish, Pi = 0. The analytic scaling result 0.1576(n2 +
2n) (solid line) well matches the numerically exact results
(circles). Figure adapted from (Manik et al., 2017b).

cycle-edge incidence matrix (5). For each flow vector F ,
we can construct the associated nodal phases as follows.
Start at the slack node s and set δ◦s = 0. Then proceed
to a neighbouring node j. Assuming that the connecting
edge e=̂(j, s) is oriented from node s to node j, the phase
value reads δ◦j = δ◦s + ∆e, where the phase difference ∆e

is reconstructed from the flow Fe by inverting Eq. (120),
which yields two possible solutions

∆+
e = arcsin(Fe/Ke) or

∆−e = π − arcsin(Fe/Ke). (123)

We must choose one of the solutions and we keep track
of this choice by decomposing the edge set as E = E+ ∪
E− where E± = {e ∈ E | ∆e = ∆±e } Not all solutions
obtained this way are physically correct. We can get
the physically correct ones by making sure that the sum
of the phase differences around any fundamental cycle
yields zero or an integer multiple of 2π, which is expressed
via the winding number condition,

$c =
1

2π

L∑
e=1

Ce,c∆
±
e ∈ Z (124)

Fixed points with E− = ∅ satisfy (114) and are always
stable, while states with E− 6= ∅ are typically unstable
(Delabays et al., 2017; Manik et al., 2017b, 2014).

The cycle flow approach yields numerous analytical in-
sights into the occurrence of multiplicity of sync states:

• No multiplicity in trees: In a lossless tree network,
either there is no fixed point or there are 2N−1 fixed
points of which one is stable and 2N−1 are unstable
(Manik et al., 2017b).

• Similarly, multiplicity is ruled out in very dense
networks as the fundamental cycles are too small
(Taylor, 2012). Hence all fixed points except one
include edges with |δ◦i − δ◦j | > π/2.

• In a simple ring network, one can derive explicit
upper and lower bounds for the number of fixed
points. Generally, the number of fixed point in-
crease with the size of the ring and decreases with
the loading of the grid (Delabays et al., 2016; Manik
et al., 2017b; Ochab and Gora, 2010).

• In plane networks, one can show that the winding
vector is unique. That is, two fixed points cannot
have the same winding vector and the same decom-
position E = E+∪E−. This can be used to derive up-
per bounds for the number of (stable) fixed points
(Delabays et al., 2017; Manik et al., 2017b).

• One can derive estimates for the number of stable
fixed points using scaling relations (Manik et al.,
2017b), an example being shown in Fig. 13. Fur-
ther numerical results for large sparse networks are
discussed in (Mehta et al., 2015; Xi et al., 2017).

The previous approach can be generalized to include
Ohmic losses (Balestra et al., 2019). Again one first fo-
cuses on the lines and considers the flows Fij and the
losses Lij = gjk

[
1− cos(δ◦i − δ◦j )

]
as basic variables. The

power balance equation is linear in these variables and
one can construct the general solution of this set of equa-
tions. Among this huge set of solutions candidates the
correct solutions are found by imposing the winding num-
ber conditions (124) and the additional constraint

(
Fij
bij

)2

+

(
Lij
gij
− 1

)2

= 1 for all edges (i, j), (125)

which follows from sin2 + cos2 = 1. One then finds
that Ohmic losses can have two conflicting effects on the
existence and number of stable steady states: On the
one hand, high losses must be compensated by higher
power flows, which may decrease their number. On the
other hand, Ohmic losses can stabilize certain solution
branches and thus foster multistability.

D. Nonlinear stability and explicit synchronization criteria

The existence of a phase-locked state is a prerequisite
for the stable operation of a power grid. But even in el-
ementary networks phase-locked states and limit cycles
can coexist, see Fig. 9, and it depends on the initial con-
ditions whether phases lock or not. In the following, we
review explicit criteria for synchronization based on the
dynamics (111) and discuss the main factors determining
a network’s synchronization capability. A comprehen-
sive overview is provided in the excellent review article
(Dörfler and Bullo, 2014).
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1. Sufficient criteria for dense networks

We first present a sufficient condition for dense net-
works, which arise naturally in power system models after
Kron reduction (cf. Sec. III.C.6). We are mainly inter-
ested second-order power grid model dynamics (111), but
it is simpler to start with the overdamped limit,

Diδ̇i = Pi +
∑
j

Kij(sin(γij)− sin(δi − δj − γij)). (126)

Dörfler and Bullo have proven that this system achieves
phase cohesiveness and frequency synchronization if the
coupling is strong compared to the differences in natu-
ral frequencies ωnat

i = Pi +
∑
j Kij sin(γij) (Dörfler and

Bullo, 2012). They quantify these two opposing forces in
terms of the parameters

Γmin := Nmin
i 6=j

(
Kij

Di
cos(γij)

)
, (127)

Γcritical :=
1

cos(γmax)

(
max
i 6=j

∣∣∣∣ωnati

Di
−
ωnatj

Dj

∣∣∣∣
+ 2 max

i

N∑
j=1

Kij

Di
sin(γij)

)
. (128)

Furthermore, they define ζmin ∈ [0, π/2 − γmax) and
ζmax ∈ (π/2, π] as the solutions of the equation
sin(ζmin) = sin(ζmax) = cos(γmax)Γcritical/Γmin whenever
this solution exists.

Then they derive the following theorem: If Γmin >
Γcritical and the angles are initially not too different (all
δi(0) are in the arc A(ζmax)), then the network will
achieve exponential frequency synchronization, i.e. all
frequencies δ̇i converge exponentially fast to a common
frequency Ω. The phases remain cohesive and all δi(t)
reach the arc Ā(ζmin).

Dörfler and Bullo further generalize this result to the
second-order power system model (111) if the damping is
high enough. More precisely, if the ratio ε = Jmax/Dmin

is lower than a critical value ε∗, the solution of the second-
order model is well approximated by the solution of the
first-order Kuramoto model up to an error of order ε.
They further argue that for actual power systems ε is
of the order of 0.1 if one takes into account the control
system in the effective damping constant Di.

Let us sketch the main idea of the proof of these the-
orems. For each point in time t we identify the nodes m
and n with the largest and smallest angles. That is, all
angles δi(t) are in the arc [δn(t), δm(t)] and

V(t) = δm(t)− δn(t) (129)

denotes the length of the arc. One can then compute the
derivative dV/dt explicitly and finds that this expression
is strictly non-positive if

Γmin sin(ζ) ≥ cos(γmax)Γmax. (130)

If this condition is satisfied, the arc A(ζ) cannot grow and
the angles remain cohesive. Frequency synchronization is
shown in a second step by differentiating Eq. (126) with
respect to time,

d

dt
δ̇i = −

N∑
j=1

Kij

Di
cos(δi − δj − γij)(δ̇i − δ̇j)

= −
N∑
j=1

Λ̃ij(t)δj . (131)

Under the condition of phase cohesiveness, the ma-
trix Λ̃(t) is a time-varying directed Laplacian. Hence,
Eq. (131) describes a contraction and all frequencies δ̇n
must converge exponentially to a common value Ω. Fi-
nally, the generalization to the second-order power sys-
tem model is analyzed within singular perturbation the-
ory.

2. Sufficient criteria for sparse networks

The sufficient criterion presented above holds for all
networks, but is of little use if the topology is sparse since
we then have Γmin = 0. A different approach is needed
in this case. One family of sufficient criteria for the ex-
istence of a phase locked state uses a method introduced
by Jadbabaie et al (Jadbabaie et al., 2004). The steady
state condition (117) is reformulated in a vectorial form

P = Λ̃(δ)δ, (132)

where Λ̃(δ) is a state-dependent Laplacian with edge
weights wij = Kijsin(δi − δj)/(δi − δj). One can then
apply fixed point theorems to derive conditions which
guarantee that Eq. (132) has a solution. For instance,
one can formulate a condition in terms of the algebraic
connectivity of the network (cf. section II), which yields
a sufficient condition for the existence of a synchronized
state (Dörfler and Bullo, 2012)

λ2(Λ) >

 ∑
(i,j)∈E

|Pi − Pj |2
1/2

, (133)

where λ2(Λ) is the algebraic connectivity of the ordi-
nary weighted graph Laplacian. We note that one has
to be careful about the domain when applying fixed
points theorems. In particular, the sufficient conditions
do not guarantee uniqueness of a solution, as discussed
in (Manik et al., 2017b).

Another approach uses cycle flow arguments as intro-
duced in section III.A.6. Denoting the sine of the phase
difference along the line ` as ψ` we have the general rela-
tion (36). It has been shown that the cycle flow contribu-
tion f is actually negligible in most cases such such that
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ψ ≈ E>Λ∗P (Dörfler et al., 2013). Hence a synchronous
state with a phase cohesiveness ζ exists if

sin(ζ) ≥ ‖ψ‖∞ ≈ ‖E>Λ∗P ‖∞. (134)

This equation provides a rigorous sufficient condition for
many elementary networks and an excellent approximate
condition for actual power grid topologies (Dörfler et al.,
2013). Recently, generalized types of Lyapunov func-
tion were derived for lossless power grids (111), allow-
ing to derive sufficient conditions for global stability of
synchronous states (Schiffer et al., 2018, 2019).

E. Probabilistic analysis of nonlinear stability

The synchronous state of a power grid can be globally
stable in favorable cases, but typically several different
asymptotic attractors exist. This includes for example
limit cycles as shown in Fig. 9 for a single generator. In
this section we explore the nonlinear stability of different
attractors of the swing equation using probabilistic meth-
ods introduced in Sec. V.C.3. We note that the swing
equation is a simplified model of power system dynamics
in the vicinity of the synchronized state. Hence, non-
synchronous attractors of this model do not faithfully
describe asymptotic states of real systems. Nevertheless,
they show when system properties that are accurately
captured by the swing equation, inertia and primary con-
trol action, are insufficient to stabilize the system.

1. Limit cycles and other attractors

A large variety of only partially understood attractors
exist in power system models. Limit cycles similar to
the ones discussed for a single machine in Sec. V.C.2)
are among the most common non-synchronous attrac-
tors. These states can be understand as arising from a
partial decoupling limit. Consider a network consisting
of two disconnected parts Vl and Vr. Both parts can syn-
chronize independently at respective frequencies Ωl and
Ωr according to (116).

If the two parts are weakly coupled, the equations of
motion include terms proportional to sin((Ωl − Ωr)t),
which average out in time. The limit cycle with separate
frequencies Ωl and Ωl persists, but the coupling causes
perturbations leading to oscillations around the mean fre-
quencies (Gelbrecht et al., 2020). When the coupling in-
creases, the basin size of these attractors (the variance
of the frequency time series) may even increase until the
attractors eventually becomes unstable. Figure 14 illus-
trates the nonlinear stability of such states in a network
with two populations of oscillators with power injections
Pi = ±1, effective damping Di = 0.1 and homogeneous
line parameters K. For weak coupling the oscillators al-
ways rotate freely at δ̇ = Pi/Di. When the coupling

FIG. 14 Nonlinear stability of different attractors in a small
ample network. (A) Structure of the network with two classes
of nodes with injections Pi = ±1. (B) The basin bifurcation
diagram for the system with the synchronized, partially syn-
chronized and synchronized regimes.

increases, a large variety of attractors come into being,
most of them with negligible basin size (referred to as
outliers). Two partially synchronous states of the type
discussed above occur more often. The basin size first
increases with K, but then the fully synchronized state
becomes dominant. Its basin size increases rapidly for
K ≥ 4, reaching unity for K ? 8.

The occurrence of similar states was already studied
from the point of view of hysteresis in (Olmi et al., 2014).
However, not all asymptotic states with appreciable basin
have this form. Olmi (2015) found that complex chimeras
are possible, and Nitzbon et al. (2017) saw that pertur-
bations at some types of nodes lead to limit cycles with a
frequency not given by (116). The impact of noise, iner-
tia and network topology on different limit cycles and the
hysteresis behavior was studied in (Tumash et al., 2018).

2. The impact of network structure

We now turn back to the synchronized state and in-
vestigate its nonlinear stability with respect to localized
perturbations in terms of the single-node basin stability.
In particular, the set of initial state A is chosen such
that all nodes except one are at the fixed point values
initially. This measure is of high practical relevance, as
actual failures or disturbances are typically limited to a
single machine or a small subnetwork. Further, it reveals
the vulnerable nodes in a grid. A numerical analysis for
sparse networks (Menck et al., 2014) showed that the lo-
cal network features have a substantial impact on the
single node basin stability. In particular, dead ends tend
to cause exceptionally poor single node basin stability.
Nodes at which the dead end is connected to the rest
of the grid must be viewed as the most vulnerable spots
with respect to dynamical perturbations.

The more detailed study of Schultz et al. (2014a),
based on a more realistic network ensemble introduced
in (Schultz et al., 2014b) identified detours as stabilizing
features and showed that there is a statistically robust re-
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FIG. 15 Topological properties determine the single node
basin stability and survivability. Left: Survivability (Surv)
and Basin Stability (BS) for nodes in a synthetic power grid
network ensemble, showing pronounced differences in the be-
haviors of various node types. Right: Node classification ac-
cording to Nitzbon et al. (2017). Edges that are not in any
cycles are trees. The nodes in trees are distinguished into
roots (part of a cycle and a tree), sprouts (degree 1 nodes
next to a root), leaf (degree 1 nodes not next to roots) and
inner tree nodes. Sprouts are further distinguished according
to their neighbour degree into dense (kav > 5) and sparse
(kav ≤ 5). Figures adapted from (Nitzbon et al., 2017).

lationship between network features and node robustness.
Kim et al. (2015) showed that the community structure
of the system determines which nodes reach a high single
node basin stability first, when increasing the coupling
strength. In (Kim et al., 2016) a systematic exploration
of the impact of network motifs on single node basin sta-
bility finds that betweenness and degree matter specif-
ically. Kim et al. (2018) and (Kim et al., 2016) show
that there exists strong non-monotonic behavior of basin
stability with increasing coupling strength. Finally, Kim
et al. (2019) introduced Integrated Basin Stability as a
way to understand the transition to global synchrony as
a function of increasing coupling strength.

A more detailed picture emerges if we add survivability,
the probability that a perturbation does not lead to a vi-
olation of transient operational bounds. Hellmann et al.
(2016) showed a strong direct dependence of single node
survivability on the node degree, with high degree nodes
being particularly unstable. Combining survivability and
basin stability. Nitzbon et al. (2017) showed a detailed
picture of various single node stabilities as a function of
topology. Key for this is a node classification into those
in a loop and those on a tree. Further subdividing the
tree nodes into leaves, inner tree nodes, and sprouts of
high and low neighbor degree identified classes of nodes
that show qualitatively different stability behavior, see
Fig. 15. Perturbations at some of these nodes were shown
to result in novel asymptotic states already, mentioned in
the previous section, that can not be explained through

a decoupling limit.

3. The necessity of realistic models

When identifying the imprint of network structure on
the stability properties of individual nodes one usually
proceeds by simplifying the system. In order to isolate
the impact of topology, other factors are taken out. For
example, most above studies assume homogeneous node
parameters and neglect voltage dynamics and losses. We
can use probabilistic methods to understand how much
these assumptions actually alter the picture.

Wolff et al. (2018) show that both inhomogeneity of
the nodes, and the details of the coupling of generators
into the grid actually have a profound impact on the sin-
gle node stability. They evaluate the basin stability and
the return times to the sync state for power grids with
a fixed topology, but using a variety of models includ-
ing the heterogeneity in the node and line parameters
and the more detailed coupling of generators, where the
generator is located at an internal node, coupled by a
line to the system bus. The grid is completely stable for
homogeneous parameters, but exhibited instability when
introducing heterogeneity. The coupling of generators at
internal nodes was found to stabilize the system overall,
however the location of unstable nodes also changed.

Taking higher order internal dynamics of the genera-
tors into account for single node stability analysis was
considered by Auer et al. (2016). It was found that while
single node survivability is well captured by the swing
equation (111), voltage dynamics and internal nodes can
lead to additional asymptotic instabilities once outside
the survivability region. First results on basin stability
of higher order generator models were obtained by Liu
et al. (2018).

Finally, most of the works discussed above and much
of the theoretical literature focus on lossless grids. Real
transmission lines have a small but non-zero resistance
(cf. Table I), and typical values of the parameter γ in
Eq. (109) are around 0.24. While neglecting Ohmic
losses is often justified for the power flow in the synchro-
nized state, limit cycles and global stability properties are
strongly affected (Hellmann et al., 2020). Figure 16a-d
shows the basin of attraction of the synchronous state
(peach) in the slice of phase space belonging to a single
node, centered on the sync state. As γ is increased from
zero to realistic values, the basin first expands and then
switches to the other half plane.

A key role in this change is played by 1-solitary states,
in which the entire network stays close to synchrony ex-
cept for one desychronized node. If the desynchronized
node is rotating with the driving force 〈δ̇i〉/Pi > 0 we
speak of a normal solitary, if it is rotating against the
local driving force, we denote this as an exotic solitary
state. Figure 16e shows the average asymptotic single
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FIG. 16 The main results of (Hellmann et al., 2020). Fig-
ure a-d show the slice of the phase space in the dimensions
belonging to a node k. The different colours show different
asymptotic states. Peach is the sync state, blue a solitary
state, and green a solitary rotating against its power infeed.
Figure e shows the average single node basin stability for
the entire ensemble of networks, for the different types of
asymptotic states, as well as the number of desynchronized
oscillators following a perturbation (solid purple line). Figure
adapted from (Hellmann et al., 2020) CC-BY-3.0.

node basin stability for different types of asymptotic
states: (i) peach for the sync state; (ii) dark blue for
ordinary 1-solitary, (iii) dark green for exotic 1-solitary
states, (iv) light green and blue for more complex asymp-
totic states that also contain individual desynchronized
nodes, and (v) grey for other asymptotic states.

The presence of exotic solitary states can be under-
stood by considering the decoupling limit for an indi-
vidual oscillator from the rest of the grid. When com-
pletely decoupled it will rotate with a frequency Ωsol =
Psol/Dsol. If we now increase the coupling that state
persists, but taking losses into account the power flow
no longer averages to 0 but to Pe = Ke sin(γe) ac-
cording to Eq. (109). Hence, in contrast to the loss-
less case, the coupling to the network will not just per-
turb the limit cycle but also shift its location to Ωsol =
(Psol −Ke sin(γ))/Dsol. This picture is confirmed in de-
tailed numerical experiments in (Hellmann et al., 2020).
Methods to restore synchronization from solitary states
have been discussed in (Taher et al., 2019).

We stress that the above results have been obtained
for a particular power system model, and all models face
certain limitations. For instance, the 1-solitary states are
related to ”pole slipping” transients in practice. They
correspond to true limit cycles in the restricted model,
but the dynamics is changed by the generator’s protec-
tion systems, which are not included in the model. We
conclude that care should be taken when interpreting
models simulation results for real world situations. Mod-

els are useful in engineering power system stability. By
construction, such models idealize certain real-world as-
pects and thus do not capture all details of real power
system dynamics. In particular, many dynamical models
do not account for the protection systems of changes in
external conditions or control system. One advantage of
probabilistic methods for stability assessment is that they
can be straightforwardly adapted to models of different
complexity and scope.

VII. STRUCTURAL STABILITY OF POWER GRIDS

Structural damages are the ultimate threat for power
grid stability: “Typically, the blackout can be traced
back to the outage of a single transmission (or genera-
tion) element” (Pourbeik et al., 2006). Such an initial
outage can trigger secondary outages and eventually a
cascade of failures bringing down a power grid entirely.
One of the most important security regulations is the
(N − 1)-rule, stating that ”no single outage will result in
other components experiencing flow or voltage limit vio-
lations” (Wood et al., 2014). But obviously, this rule is
violated occasionally, making a grid vulnerable and large
scale blackouts possible.

In this section we will analyze the impact of structural
damages focusing on outages of transmission elements.
We mostly employ a quasi static picture, assuming that,
after an outage, the grid rapidly relaxes to a new steady
state (if it exists). But in this new state other transmis-
sion elements may be overloaded, leading to emergency
shutdowns or short-circuit failures, and so on.

The key questions we address in the following are: (1)
How do failures spread in the network? Given an trans-
mission line failure, how and where are flows rerouted?
(2) How does the entire network react to structural dam-
ages or other perturbations? Is there enough redundancy
to cope with damages or do secondary failures take place?
(3) Finally, how do large scale blackouts emerge? How
do cascades propagate through the grid?

A. Quasi-static analysis of line outages

1. The line outage distribution factors

We first analyze the outage of a single line within the
linearized load flow approximation, or DC approxima-
tion, introduced in section III.A.4. So assume that a

line `=̂(r, s), that initially carries the flow F
(0)
` , fails. If

the grid remains connected, the flow change at another

transmission line e=̂(m,n) is linear in F
(0)
` ,

∆Fe = LODFe,` F
(0)
` ,

where the factor of proportionality is referred to as a line
outage distribution factor (LODF) (Grainger and Steven-
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son Jr., 1994; Wood et al., 2014).
We summarize the derivation of the LODFs following

(Guo et al., 2009; Strake et al., 2018). As the line ` =
(r, s) fails, the nodal susceptance matrix changes as

B → B + ∆B = B + brsνrsν
>
rs, (135)

where the vector νrs ∈ RN is +1 at position r, −1 at
position s and zero otherwise. This causes a change of
the nodal phase θ → θ′ = θ + α. Subtracting the lin-
earized load flow equations (32) for the perturbed and
unperturbed grid then yields

(B + ∆B)α = −∆B θ, (136)

which can be solved for α and used to compute the
change of the line flows as

∆F = BdE
>α = −BdE>(B + ∆B)∗∆B θ, (137)

with ∗ the Moore-Penrose pseudo-inverse. This expres-
sion can be greatly simplified using the Woodbury matrix
identity which finally yields

∆F = BdE
>B∗νrs(1− brsν>rsB∗νrs)−1F (0)

rs . (138)

and thus LODFe,` = bmnν
>
mnB

∗νrs(1− brsν>rsB∗νrs)−1.
This procedure is readily generalized to multiple line

outages (Güler et al., 2007; Kaiser et al., 2020b). Assume
that the lines `1, `2, . . . , `M fail, but the network remains
connected. We define a projection matrix from the space
of all links onto the subset of failing links P ∈ RM×L ,

Pme =

{
1 if e = `m
0 otherwise.

We define projections of the node-edge incidence matrix,
the branch reactance matrix, and initial flow vectors as

D := PE ∈ RN×M,

Bout := PBdP
> = diag(b`1 , b`2 , . . . , b`M) ∈ RM×M,

F
(0)
out = PF (0) = (F

(0)
`1
, . . . , F

(0)
`M

) ∈ RM.

One can then proceed as for a single failing line. Using
the Woodbury matrix identity one obtains

∆F = BdE
>B∗D

(
1−BoutD>B∗D

)∗
F

(0)
out. (139)

In this formulation, we only have to invert an M×M-matrix
in addition to the inversion of the initial matrix B∗. If M
is small, the inverse can be evaluated explicitly and we
obtain a set of generalized LODFs.

We note that contingency analysis via LODFs can be
improved by a modification of the linearization proce-
dure. One starts from the non-linear expression Fj→k =
bjk sin(θj−θk) for the real power flow and carries out the
linearization only at a later stage (Jung and Kettemann,
2016; Manik et al., 2017a). One then obtains the same
results as above, but with reweighted line susceptances

bjk → bjk cos(θj − θk). (140)

Related approaches are sometimes referred to as a ’hot
start DC approximation’.

FIG. 17 Impact of a link failure in a square lattice with
uniform edge weights. (a) Normalized change of the nodal
potentials αn for a single failing link located in the center
of the network. Both the size of the nodes as well as the
colorcode represent αn. (b) Normalized change of the link
flows Fj for the same topology. Arrows and color represent
direction and strength of flow changes, respectively. Figure
reproduced from (Strake et al., 2018).

2. Spreading of failures

A deeper physical insight into the network flow rerout-
ing problem is obtained by an analogy to discrete elec-
trostatics. Using again the Woodbury matrix identity,
Eq. (136) can be recast into the form

Bα = q (141)

with the source term

q = (1− brsν>rsB∗νrs︸ ︷︷ ︸
=:χrs

)−1F (0)
rs νsr . (142)

As the matrix B is a Laplacian matrix and the right-hand
side is non-zero only at positions r and s with oppo-
site sign, Eq. (141) is a discrete Poisson equation with a
dipole source and α is a dipole potential, see Ref. (Biggs,
1997). Indeed, if we compute the outage of a line in a
rectangular square grid, we just recover a discretized ver-
sion of the familiar electric dipole field as illustrated in
Fig. 17. Thus, LODFe,` depends on the orientation of
the two lines e and ` and decreases as distance−2.

Understanding the impact of line outages for arbitrary
grid topologies is much more challenging. The main com-
plexity arises from the network topology encoded in the
Laplacian B, which can be highly irregular. Still we can
get some insight using tools from algebraic graph theory
(Kaiser and Witthaut, 2021a; Strake et al., 2018).

Before we proceed to spatial failure spreading, we have
a more detailed look at the right hand side of the Pois-
son equation (141). The strength of the dipole |q|, more
precisely the factor χrs, can be understood from the grid
topology: If a unit power is injected at node r and with-
drawn at node s, then χrs is the flow via the direct link
(r, s) and 1−χrs the flow via other non-direct pathways.
Hence, we can view 1−χrs as a measure of redundancy of
line (r, s). Indeed, it can be rigorously related to topolog-
ical redundancy measures (Guo et al., 2021; Strake et al.,
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largest 2-connected component

remaining grid elements

FIG. 18 Left: German transmission grid topology (220 and
380 kV)(Medjroubi et al., 2015). Right: Double-logarithmic

plot of transmitted power change 〈|∆F (`)
mn|〉(r) as function of

distance r when a transmission line (`) between 880 different
pairs of nodes i, j was added. We averaged this quantity over
all edges with the same distance r to the added line (`), and
perform an ensemble average over R = 100 realizations with
randomly distributed generators and loads. For comparison
the power law expected for a 2-dimensional regular grid ∆F ∼
r−2 is shown (black line). The colored data belong to special
subsets of added edges as discussed in the text. Error bars:
95% confidence level (Jung and Kettemann, 2016).

2018). An alternative approach to line outage problems
has been introduced in (Ronellenfitsch et al., 2017). Flow
changes due to a failure can be decomposed into cycle
flows as ∆F = Cf using the edge cycle-incidence matrix
(5). The cycle flows strength f is again determined by
a discrete Poisson equation, now formulated on the dual
graph.

3. Locality and the importance of distance

Intuitively, a transmission line outage should affect
nearby lines more heavily than remote ones. In a reg-
ular square lattice, flow changes decay as distance−2 as
discussed above. But how can we quantify this statement
and what does nearby mean in a network with complex
topology? These questions were studied using a spectral
approach in (Jung and Kettemann, 2016; Kettemann,
2016; Labavic et al., 2015; Rohden et al., 2016).

The discrete Poisson equation (141) can be formally
solved by decomposing the Laplacian B into its eigenvec-
tors defined as BΦj = λjΦj with indices j = 1, . . . , N.
Assuming the failure of a line (r, s) we obtain

αm = −∆brs sin(θr − θs)
N∑
j=2

Φjm(Φ∗jr − Φ∗js)

λj
, (143)

using the generalized ‘hot-start’ linear response with edge
weights (140), see also (Haehne et al., 2019). Similarly,

the flow changes at the remaining links are given by

∆Fmn =bmn cos(θm − θn)∆brs sin(θr − θs)

×
N∑
j=2

(Φjm − Φjn)(Φ∗jr − Φ∗js)

λj
. (144)

For a regular grid of degree 2d the eigenvectors Φj are
plain waves and the eigenvalues λj can be obtained ex-
actly, yielding (Kettemann, 2016)

∆Fmn ∼ Amn∆brscd |m− r|−d. (145)

Here, cd are constants. For d = 2, a regular square grid,
the power law decay os with exponent 2 and c2 = 2π.
For a random graph one finds exponentially localized
eigenstates, and thus an exponentially decaying response
(Torres-Sánchez et al., 2020), so that the disturbance
due to the outage affects the power grid only in a finite
range around the outage (Kettemann, 2016). This phe-
nomenon is well known and originates from random scat-
tering from nodes with random degree (Hata and Nakao,
2017) and/or random parameters (Garćıa-Mata et al.,
2017), so called Anderson localization (Anderson, 1958).

Numerical calculations based on the AC load flow
equations, were found to be in very good agreement with
Eq. (143), see (Jung and Kettemann, 2016). This study
considers an addition of a new transmission line and con-
firms the generic power law decay of the change in trans-
mitted power ∆F ∼ distance−2 up to finite size correc-
tions. As a more realistic grid topology, the effect of
a change in transmission line capacity was studied in a
model of the German transmission grid (Medjroubi et al.,
2015) shown in Fig. 18 (left). The largest 2-connected
component of this grid was considered, with N = 260
nodes and L = 479 edges, homogeneous line parameter
bij and power injections randomly chosen from a binary
distribution, Pi ∈ {−P, P}. Distance is defined as the
geodesic distance, see Sec. II. The resulting response be-
havior depends strongly on the location of the added line.
Most locations result in a long range power law decay
with an exponent, that is on average close to 2. How-
ever, there are certain classes of locations, denoted in
the figure as subset 1 and subset 2, where the change
results in an exponential decay beyond a certain length
scale. Notably the regions around subset 2 are weakly
connected to the remaining grid, forming weakly con-
nected islands, explaining the fact that the disturbance
decays exponentially at distances beyond these islands.

A different approach to understand the spatial pat-
tern of flow rerouting is to adapt the measure of distance
to the respective problem (Kaiser and Witthaut, 2021a;
Strake et al., 2018). Consider the line outage distribution
factors LODFe,` for the IEEE 30-node test grid shown
in Fig. 19, fixing a failing link ` in the right part of the
network. The LODFs decay with the geodesic distance
of two links, but the correlation is only moderately pro-
nounced. This is not surprising as the geodesic distance
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FIG. 19 Localization of the impact of line failures as seen
with different distance measures. (a) Flow changes after the
outage of a single line (marked red) in the IEEE 30-bus test
grid. (b) Geodesic distance to the failing link. (c) Rerouting
distance to the failing link well predicts the spatial distribu-
tion of the flow changes. (d,e) Flow changes |∆Fe| vs. dis-
tance to the failing link ` on a logarithmic scale. One clearly
observes that the rerouting distance used in (e) yields a higher
correlation than ordinary geodesic distance shown in (d).

does not take into account the fact that flow rerouting
requires two paths between the links ` and e, one to and
one fro. We can define an alternative distance measure,
the rerouting distance, which seeks for the shortest path
from one end of link ` via e to the other end of the link
`. Numerical studies show that the correlation of rerout-
ing distance to the LODFs is much stronger than for the
geodesic distance (Strake et al., 2018).

To find a perfect measure of distance requires to take
into account all details of the Laplacian B, not just a sin-
gle shortest paths. Indeed, the resistance distance (Klein
and Randić, 1993) provides such a measure of distance
and can be applied to line outages (Tyloo et al., 2019).
However, as this distance is calculated from the full ma-
trix B, it does not offer a direct topological interpretation
as a shortest path distance does.

4. The importance of community structures

Some power grids show a pronounced community
structure. In the Scandinavian grid for example, Fin-
land is connected to its neighbors only via two AC lines
(Fig. 20 a). This weak topological connectivity induces
also a weak electric connectivity: LODFs between two
lines in different communities are significantly smaller
than expected from their distance. This aspect is il-
lustrated exemplary for the failure of a line in Sweden
(Fig. 20 b). For most lines in Finland the respective
LODFs are of the order of 10−7, only some lines in the
north near the connection to Sweden are slightly more
affected. A more quantitative analysis is provided in
Fig. 20 c, showing that LODFs between different com-
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FIG. 20 The importance of community structures in the
spreading of failures. (a) Community structure of the Scandi-
navian power grid obtained by spectral clustering. (b) Mag-
nitude of the LODFs for a failing link at the border between
Southern Norway and Sweden (red line). (c) Magnitude of
the line outage distribution factors |LODFj`| as a function
of the unweighted edge distance of the transmission lines j, `,
comparing the cases when j and ` are in the same or in dif-
ferent communities. The line gives the median, the shaded
area the 25%-75%- quantile. The grid data was taken from
(Hörsch et al., 2018a).

munities are significantly suppressed, up to several order
of magnitude, compared to LODFs within a community.
Hence, a splitting into communities can strongly impede
the spreading of failures (Kaiser et al., 2021b). Remark-
ably, several other topological structures have similar or
even stronger effects on failure spreading (Kaiser et al.,
2021a; Kaiser and Witthaut, 2021a): If the coupling be-
tween two parts of a grid can be described by an adja-
cency matrix of unit rank, then all mutual LODFs van-
ish exactly and the spreading of failures and cascades
is suppressed entirely. The simplest realization of such
a unit-rank coupling is given by a bridge (Guo et al.,
2021; Ronellenfitsch et al., 2017), which is exploited in re-
cent proposals for emergency measures to contain cascad-
ing failures (Bialek and Vahidinasab, 2021; Zocca et al.,
2021). These results emphasize the importance of struc-
tural features for the general robustness of electric power
grids.

5. Multiple outages and collective effects

When two lines k and ` fail we cannot simply super-
pose the flow changes, but have to account for collective
effects. To see this, assume that k and ` fail successively.
In calculating the impact of the failure ` we must take
into account that the flow F` already has changed due
to the failure of k. The correct result for the impact of
multiple line outage was derived in Sec. VII.A.1, which
for two lines reduces to

∆F (k,`)
e =

(
Le` Lek

)( 1 −L`k
−Lk` 1

)−1
(
F

(0)
`

F
(0)
k

)
, (146)

using the short-hand Le` = LODFe,` and denoting the
failing lines in the superscript. Collective effects can have



35

0
.1

9.9

10.0

9.8

1
9
.8

1
0
.8

9
.0

10.3

11
.2

0.0

0
.8

0.
8

b)

3
.3

13.3

19.9

16.5

0
.0

2
0
.6

1
5
.9

11.3

13
.1

2.8

1
.8

0.
6

c)

3
.7

13.7

20.3

17.3

0
.0

2
0
.2

1
7
.5

10.3

11
.2

0.0

0
.8

0.
2

d)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0
.0

10.0

10.0

10.0

2
0
.0

1
0
.5

9
.5

10.0

10
.5

1.00.
5

a)

0
.5

FIG. 21 Collective effects can lead to a complete reversal
of the flow changes in an N − 2 failure. The colour code
on lines indicates the magnitude of flow, where red indicates
failing links. (a) Flows in the initial unperturbed grid. (b),(c)
Flow changes after individual failure of two links (` and k
respectively, marked red). In both cases, the flow on the top
left link (e, bold font) is greater than in the unperturbed grid;

∆F
(`)
l ≈ 0.3, ∆F

(k)
l ≈ 0.1. (d) Flows after the simultaneous

failure of both links ` and k. The flow on the top left link is
smaller in magnitude than in the unperturbed grid and even

changes its direction: ∆F
(`,k)
e ≈ −0.7. Figure reproduced

from (Kaiser et al., 2020b).

surprising consequences. First, the impact of a line fail-
ure may be partly compensated by the intentional re-
moval of a second line. So suppose that the failure of
line ` has led to an increase of the flow on a critical line
e. In many cases we can find another line k such that

|F (k,`)
e | ≤ |F (`)

e |. (147)

This concept was previously discussed in (Motter, 2004;
Witthaut and Timme, 2015) for different types of flow
networks and we will come back to this in section VII.D.
More surprisingly, we can find cases where the collective
impact of two outages is opposite to the impact of two
isolated outages, i.e.

∆F (k)
e ,∆F (`)

e > 0 but ∆F (k,`)
e < 0. (148)

An example of this effect is shown in Fig. 21 and a more
detailed discussion can be found in (Kaiser et al., 2020b).
A further analysis shows that collective effects are par-
ticularly strong whenever the mutual LODFs, more pre-
cisely the expression

√
Lk`L`k, is large.

B. Robustness of power grids and critical infrastructures

The outage of a transmission element leads to rerouting
of currents and power flows as analyzed in the previous
section. This may eventually cause secondary failures of

other transmission elements, which can result in a large
scale cascade affecting the entire grid. In this section we
investigate the grid vulnerability to secondary failures
and analyze the weak spots of a network.

1. Why secondary failures?

If the current on a overhead transmission line is too
large, it will heat up due to Ohmic losses, which may
lead to line sag and eventually a short-circuits fault as
discussed in section V.B. Commonly, strict security rules
are implemented to avoid such faults such that the cur-
rent on a line ` may not exceed a certain limit, the line
rating, |I`| ≤ Imax

` . If voltages are close to the setpoint
and losses are small, this directly translates into an upper
limit for the real power flow,

|F`| ≤ Fmax
` . (149)

A violation of this limit typically leads to an emergency
shutdown if the line is appropriately monitored. The
line will not be damaged, but it is no longer available for
power transmission. In practice, one differentiates be-
tween short-term and long-term loads of a transmission
line. A higher loading may be acceptable on short terms,
such that a higher line rating applies. Furthermore, not
only currents but also voltages are important for grid
stability. Strict security rules apply to the voltage level
at every substation, which must remain within a certain
interval around the grid reference level. A decreasing
voltage may indicate a looming voltage instability as dis-
cussed in section V.A.

2. Critical links: A graph theoretic perspective

Consider a heavily loaded power transmission grid
which is no longer (N − 1)-secure. Some transmission
lines may be critical in the sense that, if they fail, sec-
ondary overloads occur. But which lines are critical and
which lines are prone to secondary overloads? These
question can be answered by extensive numerical simula-
tions – but a better analytic understanding would clearly
be helpful. Obviously, we expect outages of lines with a
high load or flow to be more harmful, but this is certainly
not the whole story. It is equally important whether the
grid bears enough redundancy to cope with the failure.
These aspects can quantitatively understood using tools
from graph theory (Witthaut et al., 2016).

So assume that a line (a, b) fails, which initially carried

the real power flow F
(0)
a→b from node a to node b. After the

failure, the power must be rerouted from a to b via dif-
ferent pathways. Graph theory now provides a necessary
condition for this to be possible. The Edmonds-Karp al-
gorithm yields the maximum flow that can be transmit-
ted from a to b respecting the line limits, which we call
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(a)
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FIG. 22 (a) Real power flows Fab in MW in a test grid based
on the Austrian grid topology. The two marked links are in-
vestigated in detail. (b) The ratio of the flow and redundant

capacity F
(0)
a→b/K

red
a→b provides a powerful indicator for critical

links. (c,d) Illustration of rerouting pathways after the outage
of link 1 and 2, respectively. Several rerouting pathways ex-
ist for link 1 such that the redundant capacity Kred is rather
high, a line failure is uncritical. In contrast, a failure of link
2 will cause secondary outages. The min-cut for the rerout-
ing problem consists of a single link (marked by an arrow).
This bottleneck has a free capacity of 864 MW such that a
rerouting is impossible. Grid data is based on (Hutcheon and
Bialek, 2013) with slight adaption of power injections. Aus-
tria was artificially islanded for illustrative purposes.

the redundant capacity Kred
a→b of the line (a, b). The algo-

rithm also yields the set of edges limiting the flow from
a to b, referred to as the minimum cut in graph theory.
Hence, we can obtain both a measure of redundancy and
the locations of the bottlenecks in the grid.

In summary, a necessary condition for having a feasi-
ble power flow after the outage of line (a, b) is given by

|F (0)
a→b/K

red
a→b| ≤ 1. In practice, secondary overloads will

typically occur earlier as power flows are generally not
maximum flow network flows but have to respect Kirch-
hoff’s laws. An example is shown in Fig. 22 for a semi-
synthetic power grid based on the structure of the Aus-
trian transmission grid. One of the marked links carries a
high real power flow of about 1.2 GW. It is uncritical be-
cause it has a high redundant capacity. The second line
has a lower flow (≤ 0.9 GW), but lacks redundancy. The

ratio |F (0)
a→b/K

red
a→b| is larger than one such that an outage

of this line will always lead to secondary outages and a

fragmentation of the grid. Applying Edmonds-Karp di-
rectly yields the bottleneck which limits the redundancy.

Extensive numerical tests for different power system
models (Witthaut et al., 2016) show that the ratio

|F (0)
a→b/K

red
a→b| is a powerful predictor for critical links.

Furthermore, one can improve power system robustness
by strengthening the bottlenecks (Rohden et al., 2017).

3. Generation variability and critical fluctuations

Up to now we have investigated potential overloads
and cascades assuming that the power injections are fixed
and perfectly known. But even if we known the sched-
uled values, there are always some residual fluctuations
of generation and demand. How do these fluctuation af-
fect power system stability? Is it possible that the grid is
safe on average, but that overloads occur during stochas-
tic peaks which may eventually trigger a cascade?

These important question were addressed in (Nesti
et al., 2018) using a quasi-static picture. The power
injections P are treated as Gaussian random variables
with mean µP and correlation matrix εΣP . The essen-
tial quantities in a security assessment are the relative
line loads L` := F`/F

max
` , which are determined by the

power injections via

L = diag(Fmax
1 , . . . , Fmax

L )−1BdE
>B∗︸ ︷︷ ︸

=:Υ

P

using Eq. (33). Hence, the line loads L are also Gaussian
random variables with mean µL = ΥµP and correlation
matrix εΣL = εΥΣPΥ>. A line ` gets overloaded if L` >
1. In the limit of small fluctuations ε→ 0 one can derive
the probability for this event using large deviation theory

P(|L`| ≥ 1) ≈ exp

(
− (1− |µL,`|)2

2εσ2
`

)
, (150)

where σ2
` = (ΣL)``. While for non-vanishing fluctua-

tions this is an approximation it was found that it is
very useful for ranking purposes: The smaller the ratio
(1− |µL,`|)2/σ2

` the more likely is an overload of a line `.
An example of such a probabilistic contingency anal-

ysis is shown in Fig. 23 for the SciGrid model of the
German power grid. The nominal power injections were
determined via an OPF and the correlation matrix ΣP
was derived from a statistic analysis of actual generation
time series. One finds that the vulnerable lines where
P(|L`| ≥ 1) is largest, do not coincide with the most
heavily loaded lines. High loads are one important in-
dicator for vulnerability, but the network structure and
the generation variability enter the overload probability
on an equal footing via the effective variance σ2

` .
One can extend this analysis and ask which power in-

jections typically lead to the failure of a single line. In
mathematical terms: What is the conditional probability
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FIG. 23 Fluctuations of power generation and consumption
can induce overloads of transmission lines (Nesti et al., 2018).
Left: Nominal line loads |µL,`| = |〈L`〉| in the Scigrid model of
the German power grid. The nominal operation is determined
from 1-hour averages of the renewable feed-in and load. The
feed-in of the dispatchable power plants and the power flows
are then computed via a linear OPF (see Sec. III.B). Right:
Probability of a transmission line overloads P(|L`| ≥ 1) when
the true power injections fluctuate around the nominal values.
Vulnerable line are identified by small values of the indicator
(1− |µL,`|)2/σ2

` . Figure reproduced from (Nesti et al., 2018).

distribution of P given that |L`| ≥ 1, i.e. given that the
line ` is overloaded? For ε→ 0 this probability distribu-
tion gets sharply concentrated around the vector

P (`) = µP + σ−2
` [sgn(µL,`)− µL,`]ΣPΥ>e`, (151)

where sgn denotes the sign function and e` is the `th
unit vector. That is, there is a typical injection pattern
leading to an overload of a line given that fluctuations are
small but non-zero – which is plausible assumption for
large power transmission grids. An important conclusion
is that a line failure is not necessarily triggered by large
fluctuations in the neighborhood, but can be triggered by
the cumulative effects of small unusual fluctuations in the
entire network. Correlations of the power injections, for
instance by a sudden large-scale increase in wind power
generation, play a key role for such an outage.

C. Cascades of failures and large scale blackouts

The outage of a transmission line leads to a rerout-
ing of power flows which may cause secondary overloads
as discussed above. In this section we discuss how this
mechanism leads to a cascade of failures and how such a
cascade propagates through the grid.

1. Simulating cascading failures

Cascading failures are often simulated in a quasistatic
picture. One computes a series of stationary states of the
grid by solving the AC (25) or DC load flow equations
(32), where the topology changes as elements of the grid
fail. The basic steps of a cascade may be simulated with
the following algorithm:

for all branches t that may fail do
Remove trigger link t
repeat

Solve AC/DC load flow equations
for all branches ` do

if branch ` is overloaded then
Remove branch ` from grid

end if
end for

until No further overloads or grid disconnected
end for

More advanced simulations can include aspects of volt-
age stability as well as actions by the grid operators, as
for example load shedding, the immediate disconnection
of consumers to reduce the grid load.

We note that a wide body of literature on cascading
failures exists in the statistical physics literature. Purely
topological approaches based on percolation theory are
particularly popular as they allow for analytic solutions
(see, e.g. (Albert et al., 2004, 2000; Newman, 2012)).
However, the applicability of topological models to power
grid stability is limited as discussed in (Bompard et al.,
2015; Hines et al., 2010; Korkali et al., 2017). Topological
models and measures can provide some general insights
into the vulnerability of networks (see, e.g. (Galindo-
González et al., 2020)), but they may be misleading when
applied to particular grids. In particular, they neither
capture the physics of power flows nor the heterogeneity
and localization of power generation and consumption.

2. Local versus non-local propagation

How do cascading failures propagate through a power
grid? Do subsequent failures occur in close proximity or
can they jump to remote areas of a grid?

A prime example of a locally propagating cascade has
been observed during the 2006 Western European Black-
out (Union for the Coordination of Transmission of Elec-
tricity, 2007). The cascade was triggered by the shut-
down of a line and a switching event in North-western
Germany. In every step of the cascade, flow was rerouted
to the next available routes in the southeastern direction
causing secondary failures along these routes.

However, secondary outages can also take place at
rather long distances from the initial failure. A rather
simple reason is that also small flow changes can cause a
line outage, if a line was already heavily loaded before. In
particular, a failure of line ` causes a secondary overload

of line e if (assuming that F
(0)
e > 0 w.l.o.g.)

F (0)
e +LODFe,`F` > Fmax

e ⇔ LODFe,`F` > Fmax
e −F (0)

e .
(152)

Hence, a secondary outage occurs if either the flow change
∆Fe = LODFe,`F` is large or the line e was heavily
loaded before the outage such that Fmax

e − Fe is small.
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While the flow changes ∆Fe are strongest in the vicinity
of the failing line `, little can be said about the initial line

loadings F
(0)
e . They are determined by the grid topology

as well as the power injections P and thus change in
every hour. Hence, also the weak spots of a grid do vary.

The situation becomes more involved if we go be-
yond the linear DC Approximation. For instance, volt-
age instabilities have played an important role during
the blackout in the Western USA in July 1996, where
strongly nonlocal impacts were observed (Hines et al.,
2017; Venkatasubramanian and Li, 2004).

3. Influence graphs

Influence Graphs were proposed in (Hines et al., 2017)
to describe the propagation of cascades and understand
non-local effects. This description is based on statistical
analysis of a huge number of cascading failures simulated
with a detailed physical model of the grid. The simula-
tion data is used to determine the conditional probability
Rj,i,m that a line j fails in generation m+ 1 of a cascade
given that line i failed in generation m. It turns out
that probabilities do not change much with m as long
as m ≥ 1. Only the first generation m = 0 is differ-
ent, as the grid in the initial state is typically (N − 1)-
secure such that failures are less probable. Hence cascad-
ing failures are readily characterized using two matrices
R0,R1 ∈ RL×L with elements Rj,i,0 and Rj,i,1+ respec-
tively. An elementary example of a power grid and the
reconstructed influence graph is shown in Fig. 24. A
refined treatment including multiple line outages as sep-
arate states in a Markov chain model, was proposed in
(Zhou et al., 2020).

The influence graph can be used to identify critical
lines as follows. If Pi,m is the probability that line i fails
in generation m, then in the following generation

Pj,m+1 =
∑
i

Rj,i,mPi,m. (153)

Introducing a vectorial notation, Pm =
(P1,m, . . . ,PL,m)> the probabilities evolve as
P1 = R0P0 and Pm+1 = R1Pm for all following
steps m = 1, 2, . . .. The probability that a line j failed
at some time during a long cascade is thus given by

P∞ = P0 +

∞∑
m=0

Rm1 R0P0.

We can now analyze which elements have the largest
impact on cascading failures. To this end one can cal-
culate how the cumulative failure rate Ptot =

∑
j P∞,j

changes if a single row i of the matrices isR0,R1 is modi-
fied, representing an upgrade of the respective line i. One
find that most upgrades have little effect, but some lines
lead to a drastic change of Ptot. The corresponding lines
represent the critical lines of the grid.

FIG. 24 Influence graphs are used to describe the propagation
of cascading failures and to identify critical infrastructures:
Left panel: Power flows in an elementary test grid consisting
of six nodes. Right panel: Influence graph summarizing the
likeliness that failure of one line induces the failure of another
line. The nodes of this influence graph correspond to the lines
in the original grid as identified by their endpoints. Figure
adapted from (Hines et al., 2017).

4. Statistical analysis of cascading failures

The preceding sections have provided a microscopic
picture of how flows are rerouted and how cascades prop-
agate in electric power grids. But how do these aspects
manifest in real-world large scale grids under various
operating conditions? A large scale statistical analy-
sis of these questions was recently provided by Yang et
al. (Yang and Motter, 2017) using a high quality model
of the three North-American synchronous power grids
(Eastern, Western and Texas Interconnection). The uti-
lized cascade model was significantly extended in com-
parison to the elementary model of Sec. VII.C.1 includ-
ing load shedding, generator adaption and a model for
transmission line overheating. A huge number of cas-
cades was simulated for a variety of different snapshots
of the grid: different points in time with generation and
load patterns. All cascades were triggered by the simul-
taneous failure of three lines randomly selected from the
entire grid (Western, Texas) or from a certain grid area
(Eastern Interconnection). The authors then evaluated

the probability P(p)
` that a line ` fails during a cascade as

well as the probability P(s)
` that a line ` is disconnected

from the grid carrying no load after the cascade.
The first important result of the statistical analysis

is that coreness is an important factor that determines

the probabilities P(p,s)
` (see Fig. 25). Links with a higher

coreness are more strongly connected and thus offer more
options for flow rerouting. As a consequence they are
more likely to suffer failures (the fraction of links with

P(p)
` > 0 increases with the coreness) and they also have

a higher average value of 〈P(p)
` 〉. In contrast the proba-

bility to become disconnected (i.e. the fraction of links

with P(s)
` > 0) decreases with the coreness: Links with

coreness 1 can be disconnected by a single failure while
links with higher coreness have multiple connections to
the grid and are thus hardly disconnected. Notably, the

average 〈P(s)
` 〉 still increases with the coreness. In this



39

FIG. 25 Statistical analysis of cascading failures: The core-
ness of a link determines its vulnerability to fail (upper panels)
or to be disconnected (lower panels) in a cascade of failures
(Yang and Motter, 2017). The panels show the fraction of
lines that (C) fail or (E) get disconnected in at least one cas-

cade. (D) probability of failure 〈P(p)
` 〉. (F) probability of

disconnection 〈P(c)
` 〉 averaged over all cascades and operating

conditions. Simulations were carried out for the three North
American grids for various operating conditions, see text for
details. Figure adapted from (Yang and Motter, 2017).

analysis it should be noted that the vast majority of all
links have a coreness of 2.

In a second step, the authors investigated the vulnera-
ble lines of the grids, i.e. lines with a high probability of

failure P(p)
` > 0.0005. It was found that the set of vul-

nerable lines is surprisingly small, including for instance
only 48 out of 7637 lines in the Texas interconnection.
Moreover, there is a significant overlap of the vulnerable
sets between different grid snapshots. That is, generation
and load patterns determine the vulnerability only to a
limited extend – many lines are vulnerable for various
different operating conditions. These findings raise the
hope that grid stability can be significantly extend with
comparably few grid extensions.

Finally, we are led to the question which trigger events
are particularly critical for grid stability. To answer this
question the authors analyzed all cascades causing a load
shedding above 300 MW. It was found that in these cases,
the three trigger events are typically rather close to each
other and close to the vulnerable set of the grid both
in terms of geodesic network distances and geographic
distances. This corresponds to our prior findings that
flow rerouting is predominantly local.

5. The size of cascading failures

Cascades of failures can cause large scale power out-
ages. Statistics of the size of power outages are available
for a variety of power grids as shown in Fig. 26 for the
North-American power system. One observes that large
scale outages are actually not rare events, that is, the

FIG. 26 Statistics of power outages in the North American
power grids (1984-1998): the empirical probability of a power
outage as function of the outage size on a logarithmic scale.
The data suggests a power law distribution with exponent
1.3 ≤ β ≤ 2.0. Figure reproduced from (Dobson et al., 2007).

likeliness P of an outage vanishes ’slowly’ with the size
of the outage Nout. Indeed, it has been claimed that the
distribution shows a power-law behavior

P ∼ N−βout

for large Nout with an exponent 1.3 ≤ β ≤ 2.0 for var-
ious grids (Dobson et al., 2007). While it is generally
hard to strictly establish a power law from empirical data
(Clauset et al., 2009), the statistics clearly indicate that
large-scale outages occur regularly.

A detailed analysis of the statistics of cascading fail-
ures including empirical statistics was provided by Dob-
son and colleague and is summarized in (Dobson et al.,
2007). They have analyzed outage statistics both in de-
tailed numerical models as well as in coarse-scaled model
admitting a closed form solution (Dobson et al., 2005).
This model reduces a cascade to three essential elements:

• Many elements with heterogeneous loading: The
model considers N infrastructure elements whose
initial load L0 is drawn at random from a uniform
distribution in the interval [0, Lmax]. For simplicity
we normalize all quantities such that Lmax = 1.

• Cascade mechanism: If the loading of an element
exceeds a limit L ≥ Lfail, then this element fails
and the loading is distributed to other elements.
For simplicity we assume that the loading of all
other elements then increases by the value ∆L1.

• Initial trigger: The cascade is triggered by some
initial failures increasing the initial load of all ele-
ments by an amount ∆L0.

For Lfail = 1, ∆L0 + ∆L1N ≤ 1 the number of failing
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elements Nout follows a quasi-binominal distribution

P(Nout = k) =

(
N

k

)
∆L0(∆L0 + k∆L1)k−1

× (1−∆L0 − k∆L1)N−k . (154)

If ∆L1 � 1/N this distribution is strongly peaked
around the mean. But if ∆L1 increases and approaches
the value 1/N the system approaches a critical point with
a power law distribution

P(Nout = k) ∼ k−1.5, (155)

providing a fair fit to the empirical results.
But why should a power system remain critical over

many years? Dobson et al argue that criticality emerges
in a self-organized way (Dobson et al., 2007). The loads
in the system are increasing year by year, in terms of the
model Lfail decreases and ∆L1 increases. As the system
approaches the critical point the probability and size of
power outages increases and countermeasures are imple-
mented, for instance via an extension of infrastructures.
Hence, the system remains close to the critical point.
This behavior has been reproduced in a detailed numer-
ical model (Carreras et al., 2002), where power dispatch
and cascades occur on short time scales (cf. Sec. III.B and
VII.C.1) and load and infrastructures evolve on much
slower time scales. In the model, the slow dynamics
brings the power system close to criticality and such large
scale cascades become likely. It must be noted that the
hypothesis of self-organized criticality is highly contro-
versial as summarized in (Fairley, 2004). Different ex-
planations were put forward in (Nesti et al., 2020), relat-
ing power law distributions in outages sizes to power law
distributions in city sizes, and in (Kaiser and Witthaut,
2021b).

6. Transient effects in cascading failures

Our previous analysis of cascading failures was re-
stricted to a quasi-static picture. We considered the ex-
istence and the properties of the steady-state after the
failure of a transmission line, neglecting any dynamic.
However, the existence of a stable state after a line fail-
ure is only a necessary condition for grid stability, not a
sufficient one. It is not a priori clear that the grid will
end up in this state, but there are also other possibilities:
(i) It is not guaranteed that the system relaxed to a fixed
point after failure. Instead, it can also relax to a limit cy-
cle or another attractor as discussed in section V.C.3. (ii)
Second, even if the system relaxes to the desired steady
state, it may violate operational constraints during the
relaxation, which might also cause secondary outages.
This relates to the aspect of survivability introduced in
section V.C.3. As a consequence, transient effects can in-
crease the vulnerability of grid and a quasi-static picture
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FIG. 27 Transient effects can increase the vulnerability of a
grid to cascading failures. (a) An elementary test grid with
two effective generators (P = +1.5 s−2, squares) and three
effective consumers (P = −1 s−2, circles). All lines have
Kij = 10/6 and Fmax

ij = 1. At time t = 1 s, the line (2, 4)
fails. (b) In a full dynamical study, line ratings are exceeded
transiently, leading to secondary line outages. Shown is the
number of failed lines as a a function of time. (c) In a quasi-
static picture, the grid immediately relaxes back to a stable
steady state that respects the line ratings. Shown are the
steady-state line flows |F`| before and after the initial failure.
(d) Time evolution of line flows |F`(t)| taking into account
both the continuous dynamics and the outage of lines. Figure
reproduced from (Schäfer et al., 2018).

can miss important threats to stability (Simonsen et al.,
2008).

A detailed analysis of cascading failures, including
transient overloads, was provided in (Schäfer et al., 2018).
The dynamics was modelled in terms of the aggregated
dynamical model of Sec. III.C.9 and a line was instanta-
neously removed from the simulation when the flow ex-
ceeded a line rating |Fij(t)| > Fmax

ij . The impact of such
a transient outage is illustrated for an elementary test
grid in Fig. 27, where a cascade is triggered by the fail-
ure of a single line (2, 4) (panel a). In a quasi-static pic-
ture, the grid immediately jumps to a new stable steady
state (panel c). However, the line ratings are exceeded
transiently, leading to secondary failures of line (4, 5) and
eventually to a cascade disconnecting the grid.

Whether transient overloads are important depends
crucially on grid properties, the line ratings Fmax

ij and
initial trigger that starts the cascade. The strongest im-
pacts have been observed for heavily loaded grids, where
the likeliness of secondary overloads more than doubles.

D. Braess’ paradox

The loss of a transmission line can cause a blackout, ei-
ther directly as discussed in section V.A or indirectly via
a cascade of failures. But remarkably, also the reinforce-
ment of a transmission line or the addition of a new line
can induce a loss of stability (Coletta and Jacquod, 2016;
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FIG. 28 Braess’ paradox – Loss of the synchronous fixed
point due to grid extensions. (a-c) Topology of the network.
The vertices generate/consume the power Pi = ±P , trans-
mission lines have a capacity K. We consider the cases where
(b) the capacity of one line is doubles and (c) a new line is
added. (d-f) Dynamics of the grid given by the equations of

motion 111 starting from the initial state θi(0) = θ̇i(0) = 0.
The initial grid relaxes to a synchronized fixed point, while
synchronization becomes impossible after the grid extensions.
Parameters are K = 1.03P , D = P and J = 1. Figure
adapted from (Witthaut and Timme, 2012).

Witthaut and Timme, 2012). This surprising effect is
demonstrated for an elementary test grid in Fig. 28. The
initial grid relaxes to a synchronized fixed point, whereas
synchronization becomes impossible after certain grid ex-
tensions, the synchronized fixed point has ceased to exist.

We can understand the loss of a fixed point using the
cycle flow approach introduced in section VI.C.3. In-
creasing the capacity of a line as in Fig. 28 (b) will al-
ways lower the load on this specific line and thus re-
lieve the grid. However, any fixed point must also satisfy
the winding number constraint (124) for every cycle in
the network. As a consequence all flows in the grid F
are affected, which may cause the disappearance of syn-
chronized phase-locked states, a prerequisite for normal
grid operation. In particular, for the example shown in
Fig. 28 (b) a cycle flow must be added in the counter-
clockwise direction to still satisfy the constraint (124)
after the line extension. But this would increase the load
on lines 4→ 5 and 4→ 8 above the upper limit K which
is not possible. The fixed point ceases to exist.

Remarkably, Braess’ paradox can be used to improve
grid stability. In certain situations it can be beneficial
to shut down a transmission line on purpose to relieve
another line (Motter, 2004; Witthaut and Timme, 2015),
cf. Sec. VII.A.5. Similar effects were observed for other
supply networks, starting from a seminal work on traffic
networks by Dietrich Braess (Braess, 1968).

VIII. PERTURBATIONS, FLUCTUATIONS AND
TRANSIENT DYNAMICS

Since the ascent of renewable energy sources, accompa-
nied by increased trading and regulatory activities, power
inputs and outputs increasingly fluctuate on time scales
from seconds to hours and beyond. In addition, vastly
more options for consumption patterns arise due to digi-
talization and globalization. Such perturbations and fluc-
tuations require analyses of the state of a power grid as
a driven, non-equilibrium system where voltages, voltage
angles and flows are non-static and even non-stationary
as they respond dynamically to time-varying signals.

In this section, we address key questions about pertur-
bations and fluctuations in power grids. In a mathemati-
cal model for bulk grids, we illustrate in Sec. VIII.A how
fluctuations of feed-in and consumed power translate to
frequency fluctuations, highlighting their non-Gaussian
statistics. We also highlight the impact of grid hetero-
geneities on non-Gaussian features and in Sec. VIII.B
present driving response relations for networked systems
explicitly taking into account any given grid topology.
Beyond deriving the general form of linear response the-
ory, we explain collectively emerging dynamic phenom-
ena including resonances, bulk oscillations, localization
and signal propagation in Sec. VIII.C. In Sec. VIII.D,
we outline how the a Wentzel-Kramers-Brioullin (WKB)
method helps to predict the probability of blackouts if
rare but large fluctuations kick the system out of a sta-
ble phase-locked state. For fluctuations in production
and consumption occurring simultaneously all over the
grid, a natural implementation in the spirit of statistical
mechanics amounts to consider ensembles of power grids
(Sec. VIII.E) with possible applications to obtain macro-
scopic average quantities such as the market volume and
market costs.

A. Frequency fluctuations from time series data

Dynamic driving signals continually change the over-
all state of a power grid. Due to fluctuations, the col-
lective dynamics of electric power grids thereby is not
only intrinsically out of equilibrium but also intrinsically
non-stationary. Fluctuations often directly modify es-
sential parameters of input and output and make them
time-dependent, reflecting fluctuating power feed-in and
consumption. One key example is a fluctuating power
occurring as a time-dependent parameter Pi(t), e.g. in
the second order model (111). Such a driving signal es-
pecially impacts the frequency dynamics.

To analyze how the statistics of input power fluctua-
tions influence the grid frequency, we first focus on the
bulk frequency dynamics given by Eq. (87), assuming
that the power imbalance is due to stochastic fluctua-
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FIG. 29 Non-Gaussian frequency deviations, reduced number
of extreme events. (a) Distribution of frequencies around set
frequency (50Hz) in the Continental European Grid (yellow)
deviates from best Gaussian distribution (parabolic blue solid
line). In particular, the probability (per Hertz) of large events
of more than 0.1 Hz frequency deviations is increased by more
than a factor of ten compared to the Gaussian fit. (b) The
counts of ’extreme events’, i.e. number of frequency devia-
tions larger than 0.1 Hz resolved for each minute, within full
hours, accumulated for 2017 and 2011, respectively. Figure
adapted from (Schäfer et al., 2018) using data from (Reseau
de Transport d’Electricite (RTE), 2017).

tions at at the grid nodes i = 1, . . . , N with strength qi,

∆P =

N∑
i=1

qiξi(t) =: qξ(t) . (156)

In traditional analyses of power engineering, input fluc-
tuations are either neglected or modeled to be of Gaus-
sian nature, either white or colored noise, i.e. without
any or with small temporal correlations, see e.g. (Schäfer
et al., 2017; Wood et al., 2014; Zhang and Li, 2010). For
Gaussian white noise power fluctuations, the resulting
distribution of frequency deviations ω is Gaussian with

zero average and standard deviation σ =
√∑

i qi
2ηJ̄2 . Such

a Gaussian model neglects heavy tails observed in bulk
frequency distributions (Gorjão et al., 2020b; Schäfer
et al., 2018). As Fig. 29 illustrates, such heavy tails indi-
cate that strong deviations from the reference frequency
are orders of magnitude more frequent than a Gaussian
model would predict.

Heavy-tailed frequency distributions may emerge ei-
ther from heavy-tailed distributions of power fluctua-
tions ξ̄(t) or the temporal variability of system parame-
ters (Schäfer et al., 2018). In particular, abrupt changes
of power generation may cause large frequency devia-
tions (Gorjão et al., 2020a). Counting the number of
’extreme events’ of the frequencies, defined as the fre-
quency deviations of more than 100 mHz from the set
frequency, and comparing these data between the years
2017 and 2011 reveals additional information (Fig. 29b),
cf. (Schäfer et al., 2018)). First, the total number of ex-
treme events is reduced in 2017. Second, the number of
these events is predominantly reduced in an interval of a
few minutes after full hours. Third, the total number of
threshold violations seems to still be substantial in the

first few minutes as well as in about the 18th, the 33rd,
and the 48th minutes after a full hour (each few minutes
after a full quarter hour), hinting that switching the trad-
ing intervals from hourly (in 2011) to each quarter of an
hour (in 2017), and thereby reducing the volume of trad-
ing per event together with changes in regulatory action,
might have caused the reduction in the number of ex-
treme frequency deviations. The histogram also hints at
a characteristic time scale of response of frequency devi-
ations at approximately two to four minutes delay. Both
the details of such deviations as well as the generality of
their occurrence remain poorly understood to date.

The resulting extreme events pose theoretical questions
for analysis and serious practical challenges, e.g., for se-
curity assessment. Recent modeling work (Wolff et al.,
2019) illustrates that in power grids in which consump-
tion, generation and transmission infrastructures are het-
erogeneous, fluctuating (wind) power injection at nodes
that are weakly coupled to the grid particularly con-
tribute non-Gaussian features to frequency deviations.
Some further studies considered non-Gaussian effects, ei-
ther focusing on theoretical aspects of how they may
emerge or numerical evaluation of individual wind and
solar data, see e.g. (Anvari et al., 2016; Kashima et al.,
2015; Schmietendorf et al., 2017; Totz et al., 2020). In
particular, the intermittent nature of short term wind
fluctuations cause novel types of frequency and voltage
fluctuations and thereby influence stability properties of
grid dynamics (Schmietendorf et al., 2017). Wind power
induced fluctuations, quantified in terms of frequency
deviation variance, moreover propagate along intercon-
nected chains of synchronous machines in a characteris-
tic way, with exponentially decaying amplitudes (Haehne
et al., 2019).

B. Network linear response theory for fluctuating power

How does the collective grid dynamics respond to
input fluctuations? We review the general linear re-
sponse theory valid for small perturbations with arbi-
trary time dependence (Haehne et al., 2019; Zhang et al.,
2019, 2020). Consider a small perturbation δP (t) =
(δP1(t), . . . , δPN(t))

T that at all nodes i results in phase
deviations αi(t) To first order in the deviation αi, per-
turbations evolve according to the linear wave equation
(112), as governed by the weighted graph Laplace matrix
L ∈ RN×N, defined in Eq. (113). For example, for homo-
geneous parameters, inertia Ji = J and damping factor
Di = D the response of the phase αi(t) to dynamic per-
turbations, such as a change of power δPj(t) at node j,
is given by (Haehne et al., 2019),

αi(t) =
J

D2ωR

t∫
−∞

∑
j

δPj(t
′)Gij(t

′ − t)dt
′

τ
, (157)
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with grid reference frequency ωR, see section III.C.1. The
propagator from node i to node j is defined by

Gij(t
′ − t) =

N∑
n=1

∑
σ=±1

φniφ
∗
nj

2
√

1− Λ̃n
(−σ)e(1+σ

√
1−Λ̃n) t

′−t
τ ,

(158)

see Ref. (Haehne et al., 2019) for the full derivation.
Here, 1/τ = D/J is the local relaxation rate (of a
single node disconnected from other nodes) and Λ̃n =
J/(D2ωR)Λn, where Λn ∈ R are eigenvalues and φn ∈ CN

the corresponding eigenvectors of the generalized graph
Laplacian matrix L Eq. (113), which is related to the
stability matrix used in small signal stability analysis
(Milano, 2010; Zhang et al., 2012). For each eigen-
value of the generalized Graph Laplacian Λn ∈ R there
are two eigenvalues of the linearized swing equations,
Eq. (84), the linear wave equation (112), as given by

εnσ = −i(1 + σ
√

1− Λ̃n)/τ , where σ = ±. Thus, the
denominator in Eq. (158) is proportional to the differ-

ence of these eigenvalues, 2
√

1− Λ̃n = τi(εn+ − εn−).
Note that the relaxation rate of each mode is given by
Γnσ = −Imεnσ, which is identical to the local relax-
ation rate 1/τ if Λ̃n > 1, but differs by it by the term

σ
√

1− Λ̃n/τ if Λ̃n < 1, yielding for the mode σ = −1 a
slower relaxation in the grid than for individual nodes.
This expression applies to any disturbance δPj(t) as long
as its amplitude is sufficiently small (see Suppl. Eq. (S2)
of (Tamrakar et al., 2018) for a validity condition). Sim-
ilar expressions can be obtained in response to a change
of any of the system parameters, like a change of power
capacitance δKij(t) between nodes i and j (Kettemann,
2016; Manik et al., 2017a; Witthaut et al., 2016).

In the frequency representation of the linear response,
we write the phase deviation αi(t) as generalized Fourier
series and expand its spatial dependence in terms of
eigenvectors φn of the generalized Laplacian L. Thereby
we obtain (Auer et al., 2017; Kettemann, 2016; Tamrakar
et al., 2018; Zhang et al., 2019)

αi(t) =

∞∫
−∞

N∑
n=1

cn(ε)φnie
−iεtdε. (159)

where cn(ε) is the contribution strength of angular fre-
quency ε at the n-th node. Likewise expanding the dis-
turbance in a Fourier series, we obtain

δPi(t) =
D2ωR
J

∞∫
−∞

N∑
n=1

ηn(ε)φnie
−iεtdε. (160)

Inserting these expansions for αi(t) and δPi(t) into the
linear wave equation (112) one finds, requiring that the
equation is fulfilled for each term of the Fourier series,(
−τ2ε2 − i2τε+ Λ̃n

)
cn(ε) = ηn(ε). For a given distur-

bance, the Fourier component of the phase deviation

cn(ε) is thus given in response to the one of the distur-
bance ηn(ε). Inserting that expression for cn(ε) back into
the Fourier series one gets

αi(t) =

∞∫
−∞

N∑
n=1

(
−τ2ε2 − i2τε+ Λ̃n

)−1

ηn(ε)φnie
−iεtdε.

(161)
A linear response theory generalizing Eq. (157) to in-

clude inhomogeneous parameters and the presence of
Ohmic losses has been derived in (Plietzsch et al., 2019)
and the case without inertia J = 0 has been analyzed
in (Tyloo et al., 2018). Zhang et al. (2019) disentangled
the responses and analyzed spatio-temporal response pat-
terns (see below) starting with a focus of driving one node
at one frequency, i.e. ηn(ε) = δ(ε − ε0)δn,j in Eq. (160)
to obtain characteristics of linear response estimates an-
alytically.

Given the phase deviation αi(t) for time t and posi-
tion i, one can calculate the temporal and spatial evolu-
tion of phase deviations, frequency deviations (δf)i(t) =
∂tαi(t), and the rate of change of frequency deviations
∂t(δfi(t)) (Pagnier and Jacquod, 2019a) as well as time
averaged moments of these quantities. Furthermore, mo-
ments of increments of frequency at node i, fi∆t =
fi(t + ∆t) − fi(t) (Haehne et al., 2019) contain infor-
mation about correlations at time scale ∆t. In the fol-
lowing, we review the results obtained in linear response
for these quantities for different types of non-stationary
signals impinging on exemplary power grids structures.

C. Spatio-temporal responses from localized to resonant

1. Propagation of short duration disturbances

For disturbances that last for a short time compared
to the local relaxation time τ = J/D, the linear response
at node i due to a power pulse

δPk(t) = δPδkjτδ(t− t0), (162)

at time t0 at node j by (157) yields, for times t > t0

αi(t) = − JδP

2D2ωR

N∑
n=1

∑
σ=±1

φniφ
∗
nj√

1− Λ̃n
×

e−(1+σ
√

1−Λ̃n)
t−t0
τ . (163)

For meshed, spatially embedded grids and sufficiently
large inertia analytical (Kettemann, 2016) and numeri-
cal results (Tamrakar et al., 2018) show that disturbances
propagate ballistically with velocity v such that the time
t > t0 when signals arrive at geometrical distance r from
the position of the disturbance is given by

t− t0 = r/v. (164)
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FIG. 30 Arrival time t∗ = (t− t0)/τ of a short pulse distur-
bance in units of τ = J/D versus geometric distance r∗ = r/a
in units of transmission line length a. Green rhombi: numer-
ical results for (a) square grid (b) German transmission grid
topology, KJ/(D2ωR) = 105, a realistic value for high volt-
age transmission grids. Ballistic Eq. (164) with fitted veloc-
ity v (Red line), and analytic velocity Eq. (165) (Red dashed
line). Black squares: node resolved, unfilled squares: aver-
aged over nodes at same distance (c) for Cayley tree with
branching b = 2, (d) for German transmission grid. For (c)
and (d) KJ/(D2ωR) = 10. Diffusive Eq. (166) fitted (pink
line) and with analytical Eq. (167) (pink dashed line). Ballis-
tic Eq. (164) fitted (red line) and with analytic velocity (red
dashed line). σ = P/Pc = 0.1 with critical power Pc for the
respective grid. Figures modified from Ref. (Tamrakar et al.,
2018).

Here, the arrival time t > t0 is defined as the time after
an initial single-node disturbance in δP at time t0, when
phase deviations αi(t) exceeds a threshold αth (in the
example of Fig. 30 αth = 10−6JδP/(D2ωR) is chosen).

For homogeneous regular grids, the velocity v can
be derived from response theory Eq. (163) (Kettemann,
2016; Tamrakar et al., 2018)

v = a

√
K

JωR

(
1− P 2

P 2
c

)1/4

, (165)

with the length of a single transmission line a. P < Pc
where Pc is the critical power above which no stationary
solution to the power flow equations exist. Remarkably,
Eq. (165) gives lower bounds for the arrival times (164)
both for regular square and German transmission grid
topology (red dashed lines in Figs. 30 (a,b)). According
to Eq. (165) the maximal velocity of disturbances in both
regular and meshed real grid topologies increase with de-
creasing inertia J and decrease as P → Pc.

For unmeshed grid topologies it was found in (Tam-
rakar et al., 2018) that arrival times do not linearly but
quadratically grow with distance r, resembling diffusion

t− t0 = r2/(4D). (166)

FIG. 31 Normalized Fiedler vector intensity
|φ2,i|/maxn |φ2,n| relative to its maximum (visualised
as black) for German transmission grid (left) featuring
maximal intensity at the south and north borders and for a
random grid with strong localization at a single node (black,
on bottom right in right panel). Figures modified from
Ref. (Torres-Sánchez et al., 2020).

For Cayley tree graphs with branching number b the dif-
fusion constant is derived as

D(b) =
τ∆2
√
b√

b− 1
. (167)

where ∆ = (K/(JωR))1/2(1 − P 2/P 2
c )1/4(

√
b − 1) is the

positive Fiedler value, the spectral gap of the graph
Laplacian, independent of the number of grid nodes N.
This is confirmed by numerical calculations, illustrated
in Fig. 30 (c) (dashed line). For low inertia J < Jc
the collective dynamics of coupled nodes results in dif-
fusive spreading of disturbances also in meshed grids, see
Fig. 30 (d). Jc is obtained from the condition that slow
modes with small relaxation rate appear where the spec-
tral gap (Fiedler value) ∆ is smaller than local relaxation
rate, 1/τ = D/J (Tamrakar et al., 2018). As Fig. 30
(d) illustrates, the spreading is more strongly delayed for
some nodes and disturbances are localized in certain grid
regions where nodes do not become excited above the
threshold (at least within the observation time). Linear
response theory may explain this feature as the response,
Eq. (163) is proportional to the eigenvector amplitude of
the Laplacian φni. As noted above, the long time tran-
sient behavior is dominated by the Fiedler vector, the
eigenvector with smallest nonzero eigenvalue, shown in
Fig. 31 (left) for the German transmission grid topology,
illustrating two geographic regions with high amplitudes.
A similar result has been obtained in Ref. (Pagnier and
Jacquod, 2019a) where the Fiedler vector of the weighted
European transmission grid has been found to be local-
ized at the southern and northern borders. Moreover, the
global RoCoF was found to decay with increasing system
inertia, which the authors related to the Fiedler vector
intensity. In random graphs, the Fiedler vector can be
strongly localized, even on a single node, Fig. 31 (right),
so that single-node disturbances of sufficiently small am-
plitudes remain localized. Thus, strong randomness and
inhomogeneity may result in localization of disturbances
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FIG. 32 (a) Variance of increments 〈D̂∆tω
2
i 〉 for chain of

N = 50 oscillators. Straight lines with slope m = −1/ξ with
Eq. (169). (b) Eigenvalues of Laplacian Λn for various in-
ertia J . (c) Fits of slope m (orange) converge to analytical
m = −1/ξ Eq. (169) (blue) with increasing inertia J . Vertical
dashed line: Jc. Error bars: 2σ confidence bound. Figures
reproduced from Ref. (Haehne et al., 2019).

as noted in Ref. (Kettemann, 2016), a phenomenon well
known as Anderson localization (Anderson, 1958).

2. Propagation of stochastic disturbances

On large time scales, frequency control measures com-
pensate feed-in fluctuations of renewable generators, as
reviewed in Sec. III.D, thereby maintaining stable grid
operation. However, on time scales below one second,
grid frequency fluctuations increase with increasing wind
power production (Haehne et al., 2018). Moreover, the
time scale separating local from inter-area modes is also
of the order of one second (Zhang et al., 2012). Are such
fluctuations a local feature, for instance resulting from
locally high wind power injection or do they affect grid
dynamics over large ranges? To address this question, the
sub-second grid frequency dynamics has been simulated
by stochastically perturbing the grid. Model simulations
of coupled nonlinear oscillator models with synthetically
generated wind power feed-in time series (Haehne et al.,
2019) indicate that the variance of short-term fluctua-
tions decays for large inertia exponentially with distance
to the feed-in node. These findings hold both for linear
chain networks and German transmission grid topology,
see Fig. 32, in agreement with analytical results for the
variance of frequency increment distributions

〈(D̂∆tωi)
2〉 =

〈(D̂∆tδP1)2〉
JKωR

exp

(
−di,j

ξ

)
(168)

obtained by linear response theory, Eqs. (157, 158) for
chain-like grids with N � 1 nodes. Here D̂∆tf(t) =
f(t + ∆t) − f(t) for any function f , and 〈(D̂∆tδP1)2〉
is the second moment of the increment distribution of
the disturbance at site j = 1. Thus, the second moment
of the frequency increments decays exponentially with
topological distance di,j = i− 1 from the position of the
disturbance with correlation length

ξ = vτ/2 =
√
JK/(2

√
ωRD). (169)
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FIG. 33 Kurtosis k of frequency increment PDF in a chain
of N = 100 nodes. The frequency increment distribution
p(D̂∆tωi) deforms only slowly towards an (almost) Gaussian
distribution (insets, from left to right i ∈ {2, 20, 50}, θ = 0.01
sec). Figure reproduced from Ref. (Haehne et al., 2019).

Below a critical inertia, J < Jc = ωRD
2N2/π2K ≈

1.6 · 106 kgm2, there are nonzero eigenvalues Λn < 1,
cf. Fig. 32). According to Eq. (158) the amplitude of
these modes decay with a rate smaller than 1/τ .

In sharp contrast, the kurtosis

k =
〈(D̂∆tf − 〈D̂∆tf〉)4〉
〈(D̂∆tf − 〈D̂∆tf〉)2〉2

, (170)

of frequency increments, quantifying deviations from
Gaussian distribution (k = 3), is found to decay slowly,
subexponentially, with distance from the disturbance.
Thus, the non-Gaussian shape of frequency fluctuations,
see Sec. VIII.A, persists over long ranges, Fig. 33.

In addition to these fundamental aspects, linear re-
sponse arguments have been used in various applica-
tions. Using realistic grid models, it has analyzed how
fluctuations affect the primary control effort (Tyloo and
Jacquod, 2020), where additional inertia should be placed
(Pagnier and Jacquod, 2019b) and which fluctuations
source have the strongest impact on the grid (Gambuzza
et al., 2017).

3. Localization, distributed resonances and bulk oscillations

Which collective dynamical phenomena does linear re-
sponse theory capture? Zhang et al. (Zhang et al., 2019)
analyzed the response dependence on grid topology, on
the exact location of perturbed and responding nodes
in the network, as well as on the frequency content of
the power fluctuations driving the system and compared
the results to the full nonlinear system dynamics. If a
given node j is driven by power fluctuations at a given
frequency ω, i.e. ηn(ε) = δ(ε − ω)δn,j in (160), three
regimes with qualitatively different stationary responses
emerge (see Fig. 34).

For large frequencies (compared to the range set by the
Laplacian eigenvalues), the responses are strongly local-
ized on the network, with amplitudes

ci(ω) ∼ const× ω−2d−1 (171)
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FIG. 34 Localization, distributed resonances and bulk oscil-
lations. In a small network example (a), the joint implications
on response strength (panel b) of driving one node (labeled
0) are illustrated as a function of driving frequencies (panels
c,d,e) and at four selected response nodes (labeled 1, 2, 3, and
4). Whereas at high driving frequencies, responses are local-
ized (algebraically in frequency, exponentially in inter-node
distance), they are irregular across frequencies and among
nodes in a resonance regime of intermediate driving frequen-
cies. At low frequencies, globally homogeneous bulk oscilla-
tions emerge where the entire grid follows the driving signal
(even if at only one node). All response strengths are quanti-
fied in terms of the amplitude of the frequency response rel-
ative to their low frequency limit as ω → 0. Figure courtesy
of X. Zhang (cf. also (Zhang et al., 2019)).

in Eq. (159) asymptotically (as ω → ∞) decaying ex-
ponentially with frequency and algebraically with graph-
theoretical distance d = d(i, j) response node i has from
the driven node j. Here const is a constant independent
of frequency yet contains information about eigenvector
overlaps and the identify of the driving and response
nodes. This result complements the findings on localiza-
tion reported in Fig. 31 for short-duration perturbations
to signals with arbitrary frequency content and asymp-
totically quantifies localization. Interestingly, an exact
asymptotic expansion up to order ω−2d−1 shows that the
entry (i, j) of all powers m < d(i, j) of the Laplacian ex-
actly equals zero, reflecting no existing paths from node
j to i of length shorter than their topological distance
d(i, j) (see Supplement of Ref. (Zhang et al., 2019)).

For intermediate frequencies in and near the range
defined by the Laplacian eigenvalues, resonances occur
that induce spatio-temporal responses that are strongly
inhomogeneous both as a function of frequency ω and
among response nodes i. Interestingly, near resonance
frequencies relative response strengths substantially ex-
ceed those at low frequencies (see 34b as well as Fig. 2f of
Ref. (Zhang et al., 2019)). Here the interaction network
topology plays a major role in selecting which nodes and

frequencies responses are particularly strong (or weak),
stressing the distributed nature of these resonances.

At low driving frequencies, the dynamics at all grid
nodes follow the driving signal almost instantaneously,
resulting in spatially homogeneous bulk oscillations.

Such analysis transfers to fluctuating signals with dis-
tributed frequency content and distributed driven nodes.
For instance, grid models driven by purely random pro-
cesses as well as those driven with power frequency fluc-
tuations characteristic of photovoltaic or wind power gen-
erators are well characterized by linear response theory.
Only above 95% transmission line loads, a regime to be
avoided in real operations for various reasons, linear re-
sponse theory yields substantial errors.

D. Blackouts as rare events due to large fluctuations

Dynamical instabilities of the power grid dynamics
become increasingly important as fluctuations from re-
newable resources become more frequent and possibly
stronger. How “close” is a given system to an unsta-
ble state, and thus, what is a typical time scale for fluc-
tuations to kick the system out of its stable operating
state? If strong fluctuations are relatively infrequent, it
is desirable to quantify how “rare” they are. In addi-
tion, one would naively expect that fluctuations of power
production with non-Gaussian distributions increase the
risk of desynchronization, as large fluctuations are less
suppressed in their broad tails. Interestingly, an ana-
lytic framework, pursued in (Hindes et al., 2019), quan-
tifies the risk of escape depending on the deviations from
Gaussian fluctuations. This work generalizes analytic es-
timates of (Schäfer et al., 2017) outlined in section V.C.4
in several aspects. It captures distributed dynamics of
large grids and Poissonian (rather than Gaussian) noise
suited to model fluctuations in real power production.

Hindes et al. (2019) employ a WKB-approach applied
to classical stochastic systems (cf. also (Dykman et al.,
1994)). Interestingly, they find that the rate of desyn-
chronization may exponentially speed up or slow down,
depending on how the statistics of fluctuations combines
with the least stable mode of the network, described by
the Fiedler vector. In contrast to the Kramers-like for-
mula for the escape rate (107), which only depends on
the second moment, higher-order moments of the Pois-
sonian noise are captured by the WKB-framework, and
their impact on the escape rate may be counterintuitive.
As argued below, the escape time 〈T 〉 is proportional to
exp (−(S(0) + ∆(n)S)) with action S expanded in pow-
ers of the distance to the bifurcation point. Higher-order
corrections ∆(n)S to the leading term S(0) can have both
signs, increasing or decreasing the escape time. We sum-
marize the assumptions for this WKB-approach to sketch
the main steps of deriving the escape time from a stable
state. For detailed derivations see (Hindes et al., 2019)
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and references therein.

Consider power grids described by the swing equa-
tion for synchronous machines, where an input power P̄i
is subject to fluctuations pi(t). Given histogram data,
e.g. from turbulence induced wind-generated power in-
crements, we construct a time series pi(t) of fluctuations
reproducing the increments histogram with bins of size
b. The ansatz is overdamped dynamics

ṗi = −αpi + ξi(t), (172)

with damping rate α, and a statistical drive ξi(t), so that
large intermittent spikes are allowed as they are observed
for wind and solar sources. The stochastic drive is given
as ξi(t) =

∑
bn gibδ(t−tib[n]), where the power increment

gib at i is the average of the pulse amplitude over the
bin b ∈ {1, 2, ...,M} of the histogram, where averaged
amplitudes are the measured increments gi = pi(t+ 1)−
pi(t), and tib[n] denotes the time at which the nth such
increment in bin b at unit i occurs. For modeling, the
driving signal is assumed to be Poisson shot noise, so the
time between two events where unit i receives a power
increment within bin b is exponentially distributed with
a rate νib consistent with the histogram.

Consider a synchronized phase-locked state that has
emerged through an inverse saddle-node bifurcation as
the coupling strengths increased, such that unstable, sad-
dle phase-locked states are in the vicinity of it. More-
over, take typical fluctuations to be small compared to
distances to the saddles and large fluctuations to be
rare. Such fluctuations are not captured in the large-
deviation approach of (Nesti et al., 2018), described in
section VII.B.3 where an overload may be also due to
many small deviations that accumulate.

The picture behind the analytical approach of (Hindes
et al., 2019) is that a large fluctuation drives the sys-
tem along a most-likely path in phase space. The path
connects the stable phase-locked state with the saddle,
while fluctuations and the network dynamics co-act as to
maximize the probability of desynchronization. To de-
rive the optimal path from classical mechanics, a gener-
alized Fokker-Planck equation for the stochastic network
dynamics is adapted to incorporate Poissonian noise. It
determines the probability distribution ρ of finding oscil-
lator phases Φ, phase velocities v, fluctuations p at time
t. To analyze large fluctuations that are rare we project
on the exponential tails of ρ and insert a WKB-ansatz

ρ(Φ,v,p, t) = B exp{−S(Φ,v,p, t)} (173)

into the Fokker-Planck equation. Next, the action
S(X + δX) with X ≡ (Φ,v,p) is expanded in devia-
tions δX about X, (here the stationary state), where
S(X) � 1, while |δX| ∝ 1 is assumed and only lead-
ing order terms in the first derivatives ∂ΦS, ∂vS, ∂pS
are kept. As a remark, this ansatz allows to analyze

the shape of the probability distribution even in the re-
mote tails for which δX ∝ Ω � Ω1/2 if Ω1/2 is the typ-
ical size of a fluctuation in the stationary state, in con-
trast to typical and small fluctuations as considered in
(106) in Kramers’ escape theory or entering (150) as de-
rived from large-deviation theory. Now, inserting (173)
into the Fokker-Planck equation yields a Hamilton-Jacobi
equation for an “action” S(Φ,v,p, t), from which a clas-
sical Hamiltonian H(Φ,v,p,λΦ,λv,λp) can be read off.
The Hamiltonian depends then on “coordinates” Φ,v,p,
their conjugate momenta λΦ,λv,λp equates to zero,
H(Φ,v,p,λΦ,λv,λp) = 0. The action reduces to

S(Φ,v,p) =
∑
i

[

∫
λΦ
i dΦi +

∫
λvi dvi +

∫
λpi dpi]. (174)

The next goal is to determine the optimal (least action)
path in phase space as a solution to the classical Hamil-
ton’s equations of motion, subject to the boundary condi-
tions to connect the stable fixed point with the unstable
saddle. The action along this optimal path is station-
ary (therefore we skipped already the explicit time de-
pendence of S in (174)) and enables us to estimate the
expected waiting time 〈T 〉 for desynchronization via

ln〈T 〉 ∼ S(Φs,0,0) + const, (175)

where Φs denotes the stationary solution. To esti-
mate S(Φs,0,0), the solution is determined for coupling
strengths K = KSN (1 + κ) close to KSN where saddle
node bifurcation happens. To lowest order in κ, parame-
terizing the distance to the bifurcation point, the solution
on the one-dimensional submanifold takes the form

Φi(t) = ΦSN
i + Cκ1/2rix(t) (176)

with x ∈ [−1,+1] such that for x = −1, Φi(t) = ΦSN
i −

Cκ1/2ri = Φ∗i the stable fixed point is the starting point,
and for x = +1 we have Φi(t) = ΦSN

i +Cκ1/2ri = Φsi the
unstable saddle as the end point of the optimal path; ri
is the component i of the Fiedler mode of the Laplacian
that encodes the network topology. This mode is most
sensitive to external fluctuations and mediates the (un-
likely) escape. The constant C is independent of xi and
κ and depends on the grid adjacency matrix, the phases
at the bifurcation point ΦSN

i and the Fiedler mode ri.
As it turns out (Hindes et al., 2019), to lowest order

in κ, the action S(Φs,0,0) depends on the damping con-
stant γ, the saddle node coupling KSN , the damping rate
of power fluctuations squared (α2). Moreover, each node
i of the grid contributes to S a term proportional to µ−1

2

with µ2 =
∑
b νibg

2
ib being the fluctuation variance. This

means that to lowest order in the distance κ to the sad-
dle, the expected time to blackout 〈T 〉 ∝ e−S is insen-
sitive to higher-order moments µn, n ≥ 3, of the fluctu-
ations (for Poissonian noise). However, at higher orders
in κ, the corrections to S, ∆(n)S, scale with κ accord-
ing to κn−1/2. They depend on higher-order moments
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µn and on the balance between the Fiedler’s mode pos-
itive and negative components. For n = 3, for example,
it is the product of the skewness of the power fluctua-
tion distribution with the skewness of the Fiedler mode
that determines whether the non-Gaussianity leads to an
increase or decrease of the desynchronization rates, cap-
tured by ∆(n)S. Symmetric power fluctuations with µ3

close to zero yield an increase in the desynchronization
rate as naively expected. Overall, this result (Hindes
et al., 2019) demonstrates how the network topology in-
teracts with the stochastic dynamics in a non-trivial way.

A further application of the relation between desyn-
chronization and the Fiedler-mode values amounts to a
dimensional reduction of the phase space. The phase
space is usually high-dimensional for a power grid,
but the possible desynchronization paths lie in a low-
dimensional subspace under the given assumptions. For
networks in which the saddle-node bifurcation is induced
by a single overloaded edge with phase difference π/2
(see also (Fliscounakis et al., 2013; Manik et al., 2014;
Rohden et al., 2017)), a so-called synchronized subgraph
approximation becomes exact ((Hindes et al., 2019)).
The Hamilton’s equations of the two subsystems which
desynchronize reduce to a single noisy oscillator system
in relative phase-space coordinates. More generally, the
subgraph approximation is sensible if the correspond-
ing network partition is guided by approximately uni-
form Fiedler-mode values. Thus, rare desynchronization
events become analytically predictable in spite of the
high-dimensional phase space of the grid dynamics.

E. Ensembles of power grids for distributed fluctuations

In the previous sections the focus was on the spatio-
temporal propagation of a perturbation applied to a sin-
gle or a few nodes, or the addition or removal of indi-
vidual lines. M. Mureddu (Mureddu et al., 2015) in-
troduced a suitable framework for estimating, for exam-
ple, the overall energy mismatch between day-ahead es-
timates and real data of a whole grid that should be bal-
anced by an appropriate trade on the energy balancing
market, differences between production and consumption
result from perturbations at all nodes simultaneously.
The framework was later employed in different applica-
tions (Korjani et al., 2018; Mureddu and Damiano, 2017;
Mureddu and Meyer-Ortmanns, 2018).

1. Basic approach

The idea is to consider an ensemble of power grids in
analogy to an ensemble of microstates in statistical me-
chanics. The power grids differ in their “microstates”,
which enter average values of global observables. Global
observables may be the market volume, or the amount

of energy that the energy balancing market must com-
pensate or the costs for this amount of energy (Mureddu
and Meyer-Ortmanns, 2018), the resilience of the grid
(Mureddu and Damiano, 2017), or the optimal position-
ing of storage devices (Korjani et al., 2018).

The individual “configurations” that represent the mi-
crostates are generated from a first reference configura-
tion of producers and consumers that is representative
for (part of) the considered region, a certain partition
between renewable and conventional power generation, a
certain time during the day or a season of the year. The
reference configuration is chosen to satisfy the optimal
power flow equations (OPF), it is regarded as the opera-
tion point of the system. For either transmission or dis-
tribution grids, the ensemble of microstates is generated
by applying fluctuations in production and consumption
relative to the reference configuration.

The fluctuations can be due to load fluctuations, fore-
cast errors for renewables, intra-day electricity trading or
others. In the simplest case, the fluctuations are chosen
from a truncated Gaussian distribution. Gaussian-like
forecast errors defined by standard deviations σi at nodes
i and represent expected power variations at that node at
a given time. For a load of type ` (where ` ∈ {w, pv . . .}
denotes wind, photovoltaic and other types of power gen-
eration) and power demand P`, the standard deviation
of the forecasting error is denoted as σ`, and m`, M`

are the minimum and maximum values of the support of
the distribution ρ` of P`, respectively, representing power
constraints of the different generators. Depending on the
different assignments P` to nodes i, a microstate is sam-
pled by adding a random value to the expected power
production or consumption at every node i, where the
random variable is extracted from the truncated proba-
bility density function ρti(x)

ρti(x) =

 0 if x < mi

ρi(x) if mi < x < Mi

0 if x > Mi

(177)

where the original densities (with support in all of R) are

ρi(x) =
(
2πσ2

i

)−1/2
exp

(
−x2

2σ2
i

)
for wind, photovoltaic or

other generation at nodes i. For skewed distributions,
modeling, e.g., power production by wind, we may choose
a Weibull distribution

ρWeibull(x;λ, a) =

{
a
λ (xλ )a−1e−( xλ )a , if x ≥ 0

0, otherwise
(178)

with a = 2 (Lun and Lam, 2000; Ning Lu et al., 2013;
Seguro and Lambert, 2000) and λ = 2Pw√

π
, where Pw rep-

resents the wind power production of the reference con-
figuration and Γ denotes the Gamma-function. Specific
values of the parameters fixing the respective distribu-
tion depend on the load and the type of the renewable
energy and are chosen from recorded data.
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As a next step, quantities like the resulting mismatch
P ji of power at node i in configuration j are measured

and the P ji summed over all nodes. This way we obtain
the total mismatch P j in power production (the so-called
market volume) for a given configuration j, which the
market shall balance. To obtain representative values of
the market volume, we sample a sufficiently large number
of configurations to include in the ensemble. In particu-
lar, one can analyze how the distribution of the market
volume over the volume size depends on the distribu-
tion of fluctuations (normal or Weibull), and – via the
choice of the reference configuration – on the time of the
day, the season, the geographical zone, and the percent-
age of renewables with respect to the total production
(Mureddu and Meyer-Ortmanns, 2018). The distribu-
tion of this market volume enters the market costs, the
average prices and the average profit per technology that
is involved in the production.

2. A second network layer

To model the energy market and to determine market
costs, prices and profit, a second network layer describes
market trading. Here one option is agent-based mod-
elling with network nodes representing agents (cf. (Han
et al., 2019)), such that the agents are the retailers, with
one retailer per conventional power station of the phys-
ical grid. In (Mureddu and Meyer-Ortmanns, 2018),
the agents first have to undergo a learning phase, in
which they learn how to place optimal bids in competi-
tive auctions with the aim of buying (or selling) in the
most profitable way. To simulate how real market oper-
ators acquire knowledge about the market in time and
adapt their decisions, a modified Roth-Erev algorithm
(Mureddu et al., 2015; Nicolaisen et al., 2001) adjusts
the offer propensities of agents in a self-consistent way
with the goal of maximizing profits. The agents inter-
act via a so-called market authority that provides the
link between the physical grid and the market. The mar-
ket authority knows the mismatch from the physical grid
and takes the bids of the retailers, accepts or rejects these
bids, informs the retailers about the decision and goes on
until the required mismatch in energy is covered at the
lowest possible costs.

If the energy balance is restored with energy provided
by a subset of retailers who offered the energy at the
lowest price, the feedback on the physical grid stability
must be checked, since the economically best selection
need not be reasonable from the viewpoint of grid stabil-
ity. Lines might get overloaded if the conventional gener-
ators which were selected for selling the energy happen to
spatially cluster together. Thus this framework of differ-
ent network layers, coupled via a market authority, allows
to analyze the feedback from economical (low costs) to
physical (high stability) optimization objectives.

The physical grid stability is particularly endangered
if the retailers behave like arbitrageurs when the reserve
energy price falls below the price on the intraday mar-
ket. In such a situation, retailers play a kind of minority
game (Ritmeester and Meyer-Ortmanns, 2021). Model-
ing their behavior accordingly leads to suggestions of how
to control arbitrage. For example, if the few big parties,
contributing to the market (rather than the many small
ones) are made risk-averse due to small penalties, it has
a disproportionally large effect on reducing the abuse of
price differences in terms of arbitrage. Moreover, from
the remarkable analogy of the minority game with spin
glasses it becomes understandable why a larger number
of retailers may not at all reduce the fluctuations in arbi-
trage as one would naively expect. Related features of an
underlying phase transitions are visible also in realistic
markets.

3. Alternatives for treating uncertainties

A number of alternative approaches exist to deal with
inherent uncertainties in power and demand. The goal is
to derive distributions of induced fluctuations. Induced
fluctuations may refer to the energy mismatch (as above),
or to induced voltage or frequency fluctuations. An ap-
proach called chance-constrained AC optimal power flow
(AC CC-OPF) is described in (Roald and Andersson,
2017) and references therein. In contrast to optimal
power flow as summarized in section III.B, chance con-
straints ensure that the system constraints will be satis-
fied only with a specified probability. The framework of
AC CC-OPF not only optimizes the scheduled dispatch
with respect to costs, but also the procurement of reserve
and voltage control during deviations from expected val-
ues. As outlined in (Roald and Andersson, 2017), a num-
ber of different options exist for solving this optimization
problem under uncertainty. A first one is a one-shot op-
timization, where the optimal solution is found under
respecting all constraints simultaneously (which is very
demanding in view of the complexity of the problem). A
second one is an iterative solution algorithm. A third
option similar to the ensemble approach from above em-
ploys Monte Carlo simulations for deriving uncertainty
margins and samples uncertainties in power and demand.
Here the resulting power flows are calculated for a large
number of sample realizations drawn from a given ensem-
ble, leading to Monte-Carlo based uncertainty margins
for, e.g., the voltage. For a comparison of the efficiency
of the different approaches see (Roald and Andersson,
2017).
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IX. SUMMARY AND OUTLOOK

Modern power grids are tasked with incorporating in-
creasing shares of renewable energy sources. This on-
going drastic transformation is crucial to mitigate the
climate crisis, but poses novel challenges to our under-
standing of the collective dynamics of power grid net-
works. Although the underlying equations have been
known for a long time, the treatment of such grids on
the systems level remains difficult, mainly due to their
nonlinearities and distinct heterogeneities in the dynam-
ics of the nodes and their interaction topology as well as
the various kinds of perturbations and fluctuations ap-
pearing. Additionally, power grids are embedded in and
interconnected to several other complex systems, such as
energy markets, consumers, weather and many others.
We have discussed here central challenges of decentral-
ized and heterogeneous power grids and ways of how to
analyze, understand, design, and influence them.

The review starts with a description of power grids
based on principles of physics and the treatment of the
most important node models. A crucial aspect here is
that renewable sources are connected via electronic in-
verters. This requires an extension of the classic mod-
els and leads to fundamental changes of the dynamics of
power grids. To study these models and the variety of
analysis techniques, data sets on dynamical parameters
and network topologies are necessary. However, data of
real power grids are scarce and often incomplete. There-
fore, we have presented in Chapter IV typical classes
of synthetic models that mimic main properties of real
grids, e.g. the classic IEEE test cases, but also more
recent developments on generating novel network ensem-
bles, which are often closer to real grids and emphasize
the physics perspective. Chapter V discusses an elemen-
tary grid containing only one transmission line. This
simple bi-stable system serves to introduce the most im-
portant static solutions and voltage limits, the bifurca-
tions of the dynamics, and recent stability concepts such
as basin stability and stochastic stability, providing a
deeper understanding of stability with respect to large
and sustained perturbations.

In chapter VI, recent achievements and insights for re-
alistic networks are presented. To function as a power
grid, the networked dynamics need to have a stable syn-
chronous (phase-locked) state. However, power grids are
typically multistable, exhibiting multiple synchronous
yet also asynchronous states that are unsuitable for grid
operation. This multistability increases substantially if
the ubiquitous losses are included, leading to new types of
both, synchronized and desynchronized states. We give
an overview of the most successful analytic and proba-
bilistic approaches for managing such rich variety of dy-
namics, as well as classic linearization-based methods.

The structural stability of grids is the topic of Chap-
ter VII. In complex grids the outage of a single trans-

mission element may induce cascades leading to a large-
scale blackout. Such events are well documented in real
grids all over the globe, among them several ’monster
blackouts’. When a single element fails or is added, the
network flows reroute in response. A main grid param-
eter influencing this rerouting is the network distance.
But also the splitting of a grid into different communi-
ties has a strong impact. New mathematical descriptions
of the rerouting process combining methods from statis-
tical physics, nonlinear dynamics and graph theory are
capable of describing these reroutings in new ways and of
reliably predicting critical links in a network. It turns out
that a local stability analysis is often not sufficient and
may be even misleading. The occurrence of cascades fol-
lowing individual failures can also be enhanced by tran-
sient effects, showing that dynamical and structural as-
pects are deeply interwoven. Furthermore, reroutings
may yield counterintuitive consequences if transmission
elements are added or removed. For instance under cer-
tain conditions the reinforcement of a transition line or
the addition of a new line may induce a loss of capacity
and stability, a phenomenon known as Braess’ paradox.

The power grid is subject to fluctuations. Chapter
VIII discusses this essential problem with a particular fo-
cus on the characteristics introduced by renewables. The
non-Gaussian nature of their fluctuations, often charac-
terized by heavy tail distributions, e.g. due to the cloud
structure, require new modeling and analysis approaches.
First, a linear response theory has been developed to de-
scribe the collective spatio-temporal grid dynamics sub-
ject to both stationary and transient, non-stationary and
distributed input fluctuations. This opens an efficient
way of identifying vulnerability patterns. Next, the emer-
gence of resonances, bulk oscillations, or localizations are
explained. Recent research demonstrated by a WKB-
ansatz that even desynchronization events in grids, which
originate from strong, but rare fluctuations, can be pre-
dicted. The results revise the naive expectation that fat-
tail distributions in fluctuating power production always
increase the number of rare events of desynchronization.
In real networks with renewable components, fluctuations
in generation and consumption occur in parallel, i.e., one
cannot restrict the robustness analysis to the failure of
a single line. Statistical physics provides alternative ap-
proaches to treat this problem, such as the consideration
of a whole ensemble of power grids, differing in the re-
alization of fluctuations in its microstates, or by chance-
constrained AC optimal power flow.

Aspects of power system control and monitoring were
only briefly touched in this review, but will become in-
creasingly important in future power grids with many
distributed, fluctuating power sources and low inertia
(Milano et al., 2018). This field of research spans from
single machines to entire energy system. Current chal-
lenges are the development of control systems for grid-
forming inverters that guarantee (global) dynamic sta-
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bility (Colombino et al., 2019; Schiffer et al., 2019) or
virtual inertia systems that may replace the mechanic
inertia of synchronous machines (Chen et al., 2011; Kerd-
phol et al., 2019). On the grid level, researchers thrive
for a better understanding of the interplay of control sys-
tems and network dynamics (Totz et al., 2020; Tumash
et al., 2019) and the development of new concepts for
the control of complex networks (Cornelius et al., 2013;
Huang et al., 2019). Finally, the operation of the large
scale load-frequency control system is subject to multi-
ple external influences including markets and regulations
(Kruse et al., 2021a,b).

This review demonstrates that the analysis and design
of decentralized power grids needs an interdisciplinary
approach, where techniques and concepts of power en-
gineering and control theory are newly combined with
those from statistical physics, complex dynamical sys-
tems, and network science. Such approach will continue
to form the backbone for gaining a deeper understanding
of all aspects discussed here and will inspire important
future research directions.

Future, integrated studies will have to connect the
power grid to a broader range of important aspects of the
energy system such as the energy market, the informa-
tion and communication infrastructure driving the con-
trol, consumer behavior, e-mobility, political and plan-
ning constraints etc. All these aspects point towards the
nature of the power grid as part of a multilayered network
of networks, embedded in and connected to other com-
plex systems. It becomes increasingly clear that machine
learning techniques have enormous potential in the study
and control of complex heterogeneous systems. Specifi-
cally graph neural networks have vast untapped poten-
tial. The question of how to effectively combine such
data-driven approaches with physics, engineering-based
concepts and generic modeling remains open in the con-
text of power grids.

Finally, a deeper understanding of fundamental con-
cepts underlying the collective dynamics of power grids
should enable not just an energy transition in highly de-
veloped countries with well-connected grid required to
stop contributing to the climate crisis. It may also enable
an implementation of sustainable power systems in rural
areas of the Global South and in megacities that nowa-
days may be designed from scratch. Finally, it should
improve an understanding of small scale energy islands
that can play a crucial role in the sustainable electrifica-
tion of local communities that still remain off-grid today.

Appendix A: Glossary of acronyms

EMF Electromotive force
ENTSO-E European Network of Transmission

System Operators for Electricity
HVDC high voltage directed current
LODF line outage distribution factor
MILP mixed integer linear program
OPF optimal power flow

DC-OPF linearized or DC optimal power flow
CC-OPF chance constrained optimal power flow

PI law proportional integral control law
PTDF power transfer distribution factor
pu (system) per unit (system of rescaled units)
RoCoF Rate of Change of Frequency
WKB Wentzel-Kramers-Brioullin
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