000909515 001__ 909515
000909515 005__ 20230123110645.0
000909515 0247_ $$2doi$$a10.1109/ACCESS.2022.3191665
000909515 0247_ $$2Handle$$a2128/31793
000909515 0247_ $$2WOS$$aWOS:000831058200001
000909515 037__ $$aFZJ-2022-03221
000909515 082__ $$a621.3
000909515 1001_ $$00000-0001-5614-3156$$aSchmidt, Raoul$$b0$$eCorresponding author
000909515 245__ $$aInferring topology of networks with hidden dynamic variablesnet
000909515 260__ $$aNew York, NY$$bIEEE$$c2022
000909515 3367_ $$2DRIVER$$aarticle
000909515 3367_ $$2DataCite$$aOutput Types/Journal article
000909515 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662441021_14098
000909515 3367_ $$2BibTeX$$aARTICLE
000909515 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909515 3367_ $$00$$2EndNote$$aJournal Article
000909515 520__ $$aInferring the network topology from the dynamics of interacting units constitutes a topical challenge that drives research on its theory and applications across physics, mathematics, biology, and engineering. Most current inference methods rely on time series data recorded from all dynamical variables in the system. In applications, often only some of these time series are accessible, while other units or variables of all units are hidden, i.e. inaccessible or unobserved. For instance, in AC power grids, frequency measurements often are easily available whereas determining the phase relations among the oscillatory units requires much more effort. Here, we propose a network inference method that allows to reconstruct the full network topology even if all units exhibit hidden variables. We illustrate the approach in terms of a basic AC power grid model with two variables per node, the local phase angle and the local instantaneous frequency. Based solely on frequency measurements, we infer the underlying network topology as well as the relative phases that are inaccessible to measurement. The presented method may be enhanced to include systems with more complex coupling functions and additional parameters such as losses in power grid models. These results may thus contribute towards developing and applying novel network inference approaches in engineering, biology and beyond.
000909515 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000909515 536__ $$0G:(DE-JUEL1)BMBF-03EK3055B$$aCoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B)$$cBMBF-03EK3055B$$x1
000909515 536__ $$0G:(BMBF)03SF0472B$$aVerbundvorhaben CoNDyNet: Systemanalytische Bewertung von Energiesicherheit im Stromnetz (03SF0472B)$$c03SF0472B$$x2
000909515 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909515 7001_ $$0P:(DE-HGF)0$$aHaehne, Hauke$$b1
000909515 7001_ $$00000-0002-2648-2365$$aHillmann, Laura$$b2
000909515 7001_ $$0P:(DE-HGF)0$$aCasadiego, Jose$$b3
000909515 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b4
000909515 7001_ $$00000-0003-1607-9748$$aSchafer, Benjamin$$b5
000909515 7001_ $$00000-0002-5956-3137$$aTimme, Marc$$b6
000909515 773__ $$0PERI:(DE-600)2687964-5$$a10.1109/ACCESS.2022.3191665$$gVol. 10, p. 76682 - 76692$$p76682 - 76692$$tIEEE access$$v10$$x2169-3536$$y2022
000909515 8564_ $$uhttps://juser.fz-juelich.de/record/909515/files/Inferring_Topology_of_Networks_With_Hidden_Dynamic_Variables.pdf$$yOpenAccess
000909515 909CO $$ooai:juser.fz-juelich.de:909515$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b4$$kFZJ
000909515 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000909515 9141_ $$y2022
000909515 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000909515 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000909515 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909515 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000909515 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-28
000909515 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909515 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-28
000909515 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE ACCESS : 2021$$d2022-11-11
000909515 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000909515 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000909515 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-06-13T11:44:26Z
000909515 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-06-13T11:44:26Z
000909515 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-06-13T11:44:26Z
000909515 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000909515 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-11
000909515 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000909515 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000909515 920__ $$lno
000909515 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000909515 980__ $$ajournal
000909515 980__ $$aVDB
000909515 980__ $$aUNRESTRICTED
000909515 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000909515 9801_ $$aFullTexts