001     909515
005     20230123110645.0
024 7 _ |a 10.1109/ACCESS.2022.3191665
|2 doi
024 7 _ |a 2128/31793
|2 Handle
024 7 _ |a WOS:000831058200001
|2 WOS
037 _ _ |a FZJ-2022-03221
082 _ _ |a 621.3
100 1 _ |a Schmidt, Raoul
|0 0000-0001-5614-3156
|b 0
|e Corresponding author
245 _ _ |a Inferring topology of networks with hidden dynamic variablesnet
260 _ _ |a New York, NY
|c 2022
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1662441021_14098
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Inferring the network topology from the dynamics of interacting units constitutes a topical challenge that drives research on its theory and applications across physics, mathematics, biology, and engineering. Most current inference methods rely on time series data recorded from all dynamical variables in the system. In applications, often only some of these time series are accessible, while other units or variables of all units are hidden, i.e. inaccessible or unobserved. For instance, in AC power grids, frequency measurements often are easily available whereas determining the phase relations among the oscillatory units requires much more effort. Here, we propose a network inference method that allows to reconstruct the full network topology even if all units exhibit hidden variables. We illustrate the approach in terms of a basic AC power grid model with two variables per node, the local phase angle and the local instantaneous frequency. Based solely on frequency measurements, we infer the underlying network topology as well as the relative phases that are inaccessible to measurement. The presented method may be enhanced to include systems with more complex coupling functions and additional parameters such as losses in power grid models. These results may thus contribute towards developing and applying novel network inference approaches in engineering, biology and beyond.
536 _ _ |a 1112 - Societally Feasible Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1112
|c POF4-111
|f POF IV
|x 0
536 _ _ |a CoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B)
|0 G:(DE-JUEL1)BMBF-03EK3055B
|c BMBF-03EK3055B
|x 1
536 _ _ |a Verbundvorhaben CoNDyNet: Systemanalytische Bewertung von Energiesicherheit im Stromnetz (03SF0472B)
|0 G:(BMBF)03SF0472B
|c 03SF0472B
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Haehne, Hauke
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hillmann, Laura
|0 0000-0002-2648-2365
|b 2
700 1 _ |a Casadiego, Jose
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Witthaut, Dirk
|0 P:(DE-Juel1)162277
|b 4
700 1 _ |a Schafer, Benjamin
|0 0000-0003-1607-9748
|b 5
700 1 _ |a Timme, Marc
|0 0000-0002-5956-3137
|b 6
773 _ _ |a 10.1109/ACCESS.2022.3191665
|g Vol. 10, p. 76682 - 76692
|0 PERI:(DE-600)2687964-5
|p 76682 - 76692
|t IEEE access
|v 10
|y 2022
|x 2169-3536
856 4 _ |u https://juser.fz-juelich.de/record/909515/files/Inferring_Topology_of_Networks_With_Hidden_Dynamic_Variables.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909515
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162277
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1112
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE ACCESS : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-06-13T11:44:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-06-13T11:44:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-06-13T11:44:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21