000909535 001__ 909535
000909535 005__ 20230123110646.0
000909535 0247_ $$2doi$$a10.1016/j.nicl.2022.103176
000909535 0247_ $$2Handle$$a2128/31786
000909535 0247_ $$2pmid$$a36063759
000909535 0247_ $$2WOS$$aWOS:000863158500011
000909535 037__ $$aFZJ-2022-03224
000909535 082__ $$a610
000909535 1001_ $$0P:(DE-Juel1)190904$$aDong, Debo$$b0$$ufzj
000909535 245__ $$aLinking cerebellar functional gradients to transdiagnostic behavioral dimensions of psychopathology
000909535 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2022
000909535 3367_ $$2DRIVER$$aarticle
000909535 3367_ $$2DataCite$$aOutput Types/Journal article
000909535 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662363609_24151
000909535 3367_ $$2BibTeX$$aARTICLE
000909535 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909535 3367_ $$00$$2EndNote$$aJournal Article
000909535 520__ $$aHigh co-morbidity and substantial overlap across psychiatric disorders encourage a transition in psychiatry research from categorical to dimensional approaches that integrate neuroscience and psychopathology. Converging evidence suggests that the cerebellum is involved in a wide range of cognitive functions and mental disorders. An important question thus centers on the extent to which cerebellar function can be linked to transdiagnostic dimensions of psychopathology. To address this question, we used a multivariate data-driven statistical technique (partial least squares) to identify latent dimensions linking human cerebellar connectome as assessed by functional MRI to a large set of clinical, cognitive, and trait measures across 198 participants, including healthy controls (n = 92) as well as patients diagnosed with attention-deficit/hyperactivity disorder (n = 35), bipolar disorder (n = 36), and schizophrenia (n = 35). Macroscale spatial gradients of connectivity at voxel level were used to characterize cerebellar connectome properties, which provide a low-dimensional representation of cerebellar connectivity, i.e., a sensorimotor-supramodal hierarchical organization. This multivariate analysis revealed significant correlated patterns of cerebellar connectivity gradients and behavioral measures that could be represented into four latent dimensions: general psychopathology, impulsivity and mood, internalizing symptoms and executive dysfunction. Each dimension was associated with a unique spatial pattern of cerebellar connectivity gradients across all participants. Multiple control analyses and 10-fold cross-validation confirmed the robustness and generalizability of the yielded four dimensions. These findings highlight the relevance of cerebellar connectivity as a necessity for the study and classification of transdiagnostic dimensions of psychopathology and call on researcher to pay more attention to the role of cerebellum in the dimensions of psychopathology, not just within the cerebral cortex.
000909535 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000909535 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909535 7001_ $$0P:(DE-HGF)0$$aGuell, Xavier$$b1
000909535 7001_ $$0P:(DE-Juel1)161225$$aGENON, Sarah$$b2$$ufzj
000909535 7001_ $$0P:(DE-HGF)0$$aWang, Yulin$$b3
000909535 7001_ $$0P:(DE-Juel1)171414$$aChen, Ji$$b4$$ufzj
000909535 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b5$$ufzj
000909535 7001_ $$0P:(DE-HGF)0$$aYao, Dezhong$$b6
000909535 7001_ $$0P:(DE-HGF)0$$aLuo, Cheng$$b7
000909535 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2022.103176$$gVol. 36, p. 103176 -$$p103176 -$$tNeuroImage: Clinical$$v36$$x2213-1582$$y2022
000909535 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S2213158222002418?utm_campaign=STMJ_AUTH_SERV_PUBLISHED&utm_medium=email&utm_acid=123530559&SIS_ID=&dgcid=STMJ_AUTH_SERV_PUBLISHED&CMX_ID=&utm_in=DM291424&utm_source=AC_#!
000909535 8564_ $$uhttps://juser.fz-juelich.de/record/909535/files/1-s2.0-S2213158222002418-main.pdf$$yOpenAccess
000909535 909CO $$ooai:juser.fz-juelich.de:909535$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190904$$aForschungszentrum Jülich$$b0$$kFZJ
000909535 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)190904$$a University of Electronic Science and Technology of China$$b0
000909535 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Massachusetts Institute of Technology, Cambridge, United States$$b1
000909535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b2$$kFZJ
000909535 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161225$$a HHU Düsseldorf$$b2
000909535 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Southwest University, Chongqing 400715, China$$b3
000909535 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Vrije Universiteit Brussel, Belgium$$b3
000909535 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Data Analysis, Ghent University$$b3
000909535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171414$$aForschungszentrum Jülich$$b4$$kFZJ
000909535 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)171414$$a HHU Düsseldorf$$b4
000909535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ
000909535 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b5
000909535 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Electronic Science and Technology of China$$b6
000909535 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Electronic Science and Technology of China$$b7
000909535 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000909535 9141_ $$y2022
000909535 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000909535 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000909535 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000909535 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000909535 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909535 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000909535 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE-CLIN : 2021$$d2022-11-15
000909535 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000909535 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000909535 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T10:57:54Z
000909535 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T10:57:54Z
000909535 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-10-13T10:57:54Z
000909535 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000909535 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000909535 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-15
000909535 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-15
000909535 920__ $$lyes
000909535 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000909535 980__ $$ajournal
000909535 980__ $$aVDB
000909535 980__ $$aUNRESTRICTED
000909535 980__ $$aI:(DE-Juel1)INM-7-20090406
000909535 9801_ $$aFullTexts