001     909535
005     20230123110646.0
024 7 _ |a 10.1016/j.nicl.2022.103176
|2 doi
024 7 _ |a 2128/31786
|2 Handle
024 7 _ |a 36063759
|2 pmid
024 7 _ |a WOS:000863158500011
|2 WOS
037 _ _ |a FZJ-2022-03224
082 _ _ |a 610
100 1 _ |a Dong, Debo
|0 P:(DE-Juel1)190904
|b 0
|u fzj
245 _ _ |a Linking cerebellar functional gradients to transdiagnostic behavioral dimensions of psychopathology
260 _ _ |a [Amsterdam u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1662363609_24151
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High co-morbidity and substantial overlap across psychiatric disorders encourage a transition in psychiatry research from categorical to dimensional approaches that integrate neuroscience and psychopathology. Converging evidence suggests that the cerebellum is involved in a wide range of cognitive functions and mental disorders. An important question thus centers on the extent to which cerebellar function can be linked to transdiagnostic dimensions of psychopathology. To address this question, we used a multivariate data-driven statistical technique (partial least squares) to identify latent dimensions linking human cerebellar connectome as assessed by functional MRI to a large set of clinical, cognitive, and trait measures across 198 participants, including healthy controls (n = 92) as well as patients diagnosed with attention-deficit/hyperactivity disorder (n = 35), bipolar disorder (n = 36), and schizophrenia (n = 35). Macroscale spatial gradients of connectivity at voxel level were used to characterize cerebellar connectome properties, which provide a low-dimensional representation of cerebellar connectivity, i.e., a sensorimotor-supramodal hierarchical organization. This multivariate analysis revealed significant correlated patterns of cerebellar connectivity gradients and behavioral measures that could be represented into four latent dimensions: general psychopathology, impulsivity and mood, internalizing symptoms and executive dysfunction. Each dimension was associated with a unique spatial pattern of cerebellar connectivity gradients across all participants. Multiple control analyses and 10-fold cross-validation confirmed the robustness and generalizability of the yielded four dimensions. These findings highlight the relevance of cerebellar connectivity as a necessity for the study and classification of transdiagnostic dimensions of psychopathology and call on researcher to pay more attention to the role of cerebellum in the dimensions of psychopathology, not just within the cerebral cortex.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Guell, Xavier
|0 P:(DE-HGF)0
|b 1
700 1 _ |a GENON, Sarah
|0 P:(DE-Juel1)161225
|b 2
|u fzj
700 1 _ |a Wang, Yulin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Chen, Ji
|0 P:(DE-Juel1)171414
|b 4
|u fzj
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 5
|u fzj
700 1 _ |a Yao, Dezhong
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Luo, Cheng
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.nicl.2022.103176
|g Vol. 36, p. 103176 -
|0 PERI:(DE-600)2701571-3
|p 103176 -
|t NeuroImage: Clinical
|v 36
|y 2022
|x 2213-1582
856 4 _ |u https://www.sciencedirect.com/science/article/pii/S2213158222002418?utm_campaign=STMJ_AUTH_SERV_PUBLISHED&utm_medium=email&utm_acid=123530559&SIS_ID=&dgcid=STMJ_AUTH_SERV_PUBLISHED&CMX_ID=&utm_in=DM291424&utm_source=AC_#!
856 4 _ |u https://juser.fz-juelich.de/record/909535/files/1-s2.0-S2213158222002418-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909535
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190904
910 1 _ |a University of Electronic Science and Technology of China
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)190904
910 1 _ |a Massachusetts Institute of Technology, Cambridge, United States
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161225
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)161225
910 1 _ |a Southwest University, Chongqing 400715, China
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Vrije Universiteit Brussel, Belgium
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Department of Data Analysis, Ghent University
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171414
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)171414
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)131678
910 1 _ |a University of Electronic Science and Technology of China
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a University of Electronic Science and Technology of China
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE-CLIN : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T10:57:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T10:57:54Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T10:57:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21