Home > Publications database > Linking cerebellar functional gradients to transdiagnostic behavioral dimensions of psychopathology > print |
001 | 909535 | ||
005 | 20230123110646.0 | ||
024 | 7 | _ | |a 10.1016/j.nicl.2022.103176 |2 doi |
024 | 7 | _ | |a 2128/31786 |2 Handle |
024 | 7 | _ | |a 36063759 |2 pmid |
024 | 7 | _ | |a WOS:000863158500011 |2 WOS |
037 | _ | _ | |a FZJ-2022-03224 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Dong, Debo |0 P:(DE-Juel1)190904 |b 0 |u fzj |
245 | _ | _ | |a Linking cerebellar functional gradients to transdiagnostic behavioral dimensions of psychopathology |
260 | _ | _ | |a [Amsterdam u.a.] |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1662363609_24151 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a High co-morbidity and substantial overlap across psychiatric disorders encourage a transition in psychiatry research from categorical to dimensional approaches that integrate neuroscience and psychopathology. Converging evidence suggests that the cerebellum is involved in a wide range of cognitive functions and mental disorders. An important question thus centers on the extent to which cerebellar function can be linked to transdiagnostic dimensions of psychopathology. To address this question, we used a multivariate data-driven statistical technique (partial least squares) to identify latent dimensions linking human cerebellar connectome as assessed by functional MRI to a large set of clinical, cognitive, and trait measures across 198 participants, including healthy controls (n = 92) as well as patients diagnosed with attention-deficit/hyperactivity disorder (n = 35), bipolar disorder (n = 36), and schizophrenia (n = 35). Macroscale spatial gradients of connectivity at voxel level were used to characterize cerebellar connectome properties, which provide a low-dimensional representation of cerebellar connectivity, i.e., a sensorimotor-supramodal hierarchical organization. This multivariate analysis revealed significant correlated patterns of cerebellar connectivity gradients and behavioral measures that could be represented into four latent dimensions: general psychopathology, impulsivity and mood, internalizing symptoms and executive dysfunction. Each dimension was associated with a unique spatial pattern of cerebellar connectivity gradients across all participants. Multiple control analyses and 10-fold cross-validation confirmed the robustness and generalizability of the yielded four dimensions. These findings highlight the relevance of cerebellar connectivity as a necessity for the study and classification of transdiagnostic dimensions of psychopathology and call on researcher to pay more attention to the role of cerebellum in the dimensions of psychopathology, not just within the cerebral cortex. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Guell, Xavier |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a GENON, Sarah |0 P:(DE-Juel1)161225 |b 2 |u fzj |
700 | 1 | _ | |a Wang, Yulin |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Chen, Ji |0 P:(DE-Juel1)171414 |b 4 |u fzj |
700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 5 |u fzj |
700 | 1 | _ | |a Yao, Dezhong |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Luo, Cheng |0 P:(DE-HGF)0 |b 7 |
773 | _ | _ | |a 10.1016/j.nicl.2022.103176 |g Vol. 36, p. 103176 - |0 PERI:(DE-600)2701571-3 |p 103176 - |t NeuroImage: Clinical |v 36 |y 2022 |x 2213-1582 |
856 | 4 | _ | |u https://www.sciencedirect.com/science/article/pii/S2213158222002418?utm_campaign=STMJ_AUTH_SERV_PUBLISHED&utm_medium=email&utm_acid=123530559&SIS_ID=&dgcid=STMJ_AUTH_SERV_PUBLISHED&CMX_ID=&utm_in=DM291424&utm_source=AC_#! |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/909535/files/1-s2.0-S2213158222002418-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:909535 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190904 |
910 | 1 | _ | |a University of Electronic Science and Technology of China |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)190904 |
910 | 1 | _ | |a Massachusetts Institute of Technology, Cambridge, United States |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)161225 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)161225 |
910 | 1 | _ | |a Southwest University, Chongqing 400715, China |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Vrije Universiteit Brussel, Belgium |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Data Analysis, Ghent University |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)171414 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)171414 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 5 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a University of Electronic Science and Technology of China |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Electronic Science and Technology of China |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEUROIMAGE-CLIN : 2021 |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-10-13T10:57:54Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-10-13T10:57:54Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-10-13T10:57:54Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-15 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-15 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|