000909542 001__ 909542
000909542 005__ 20240711113511.0
000909542 0247_ $$2doi$$a10.1088/1361-6595/ac882f
000909542 0247_ $$2ISSN$$a0963-0252
000909542 0247_ $$2ISSN$$a1361-6595
000909542 0247_ $$2Handle$$a2128/31790
000909542 037__ $$aFZJ-2022-03231
000909542 082__ $$a530
000909542 1001_ $$0P:(DE-Juel1)6121$$aKotov, Vladislav$$b0$$eCorresponding author$$ufzj
000909542 245__ $$aVibrational relaxation and triggering of the non-equilibrium vibrational decomposition of CO 2 in gas discharges
000909542 260__ $$aBristol$$bIOP Publ.$$c2022
000909542 3367_ $$2DRIVER$$aarticle
000909542 3367_ $$2DataCite$$aOutput Types/Journal article
000909542 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662367157_21700
000909542 3367_ $$2BibTeX$$aARTICLE
000909542 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909542 3367_ $$00$$2EndNote$$aJournal Article
000909542 520__ $$aNon-equilibrium vibrational dissociation CO2 → CO + O at translational–rotational temperatures T ⩽ 1200 K is investigated with semi-empiric and computational models. The governing parameter $Q/{n}_{0}^{2}$ has been introduced, where Q is the specific volumetric power coupled into vibrational states and n0 is the initial number density of CO2. It has been shown that the non-equilibrium vibrational process can only be triggered when $Q/{n}_{0}^{2}$ exceeds some critical value determined by the speed of vibrational relaxation. Simple semi-empiric calculations are backed by the state-to-state simulations of the CO2 vibrational kinetics in two-modes approximation performed for conditions of microwave sustained gas discharges. The vibrational kinetics model is benchmarked against the experimental vibrational relaxation times as well as the shock tube data on the rate of the process CO2 + M → CO + O + M for M = Ar and literature data for M = CO2. At T = 300 K the estimated ${\left(Q/{n}_{0}^{2}\right)}_{\text{crit}}\eqsim 6\times 1{0}^{-40}$ W m3 or ${\left(Q/{p}^{2}\right)}_{\text{crit}}\eqsim $ 35 W (m−3 Pa−2) (p is the gas pressure). ${\left(Q/{p}^{2}\right)}_{\text{crit}}$ is found to always increase with increased T.
000909542 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000909542 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909542 773__ $$0PERI:(DE-600)2004012-X$$a10.1088/1361-6595/ac882f$$gVol. 31, no. 9, p. 094002 -$$n9$$p094002 -$$tPlasma sources science and technology$$v31$$x0963-0252$$y2022
000909542 8564_ $$uhttps://juser.fz-juelich.de/record/909542/files/Kotov_2022_Plasma_Sources_Sci._Technol._31_094002.pdf$$yOpenAccess
000909542 8564_ $$uhttps://juser.fz-juelich.de/record/909542/files/Postprint_Kotov_Vibrational%20relaxation%20and%20triggering.pdf$$yOpenAccess
000909542 8767_ $$d2022-12-02$$eHybrid-OA$$jPublish and Read
000909542 909CO $$ooai:juser.fz-juelich.de:909542$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000909542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6121$$aForschungszentrum Jülich$$b0$$kFZJ
000909542 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000909542 9141_ $$y2022
000909542 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909542 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000909542 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000909542 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909542 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000909542 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909542 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000909542 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-17$$wger
000909542 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000909542 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000909542 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000909542 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000909542 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-17
000909542 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA SOURCES SCI T : 2021$$d2022-11-17
000909542 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000909542 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000909542 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000909542 920__ $$lyes
000909542 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000909542 9801_ $$aFullTexts
000909542 980__ $$ajournal
000909542 980__ $$aVDB
000909542 980__ $$aUNRESTRICTED
000909542 980__ $$aI:(DE-Juel1)IEK-4-20101013
000909542 980__ $$aAPC
000909542 981__ $$aI:(DE-Juel1)IFN-1-20101013