Hauptseite > Publikationsdatenbank > Vibrational relaxation and triggering of the non-equilibrium vibrational decomposition of CO 2 in gas discharges > print |
001 | 909542 | ||
005 | 20240711113511.0 | ||
024 | 7 | _ | |a 10.1088/1361-6595/ac882f |2 doi |
024 | 7 | _ | |a 0963-0252 |2 ISSN |
024 | 7 | _ | |a 1361-6595 |2 ISSN |
024 | 7 | _ | |a 2128/31790 |2 Handle |
037 | _ | _ | |a FZJ-2022-03231 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Kotov, Vladislav |0 P:(DE-Juel1)6121 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Vibrational relaxation and triggering of the non-equilibrium vibrational decomposition of CO 2 in gas discharges |
260 | _ | _ | |a Bristol |c 2022 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1662367157_21700 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Non-equilibrium vibrational dissociation CO2 → CO + O at translational–rotational temperatures T ⩽ 1200 K is investigated with semi-empiric and computational models. The governing parameter $Q/{n}_{0}^{2}$ has been introduced, where Q is the specific volumetric power coupled into vibrational states and n0 is the initial number density of CO2. It has been shown that the non-equilibrium vibrational process can only be triggered when $Q/{n}_{0}^{2}$ exceeds some critical value determined by the speed of vibrational relaxation. Simple semi-empiric calculations are backed by the state-to-state simulations of the CO2 vibrational kinetics in two-modes approximation performed for conditions of microwave sustained gas discharges. The vibrational kinetics model is benchmarked against the experimental vibrational relaxation times as well as the shock tube data on the rate of the process CO2 + M → CO + O + M for M = Ar and literature data for M = CO2. At T = 300 K the estimated ${\left(Q/{n}_{0}^{2}\right)}_{\text{crit}}\eqsim 6\times 1{0}^{-40}$ W m3 or ${\left(Q/{p}^{2}\right)}_{\text{crit}}\eqsim $ 35 W (m−3 Pa−2) (p is the gas pressure). ${\left(Q/{p}^{2}\right)}_{\text{crit}}$ is found to always increase with increased T. |
536 | _ | _ | |a 1232 - Power-based Fuels and Chemicals (POF4-123) |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
773 | _ | _ | |a 10.1088/1361-6595/ac882f |g Vol. 31, no. 9, p. 094002 - |0 PERI:(DE-600)2004012-X |n 9 |p 094002 - |t Plasma sources science and technology |v 31 |y 2022 |x 0963-0252 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/909542/files/Kotov_2022_Plasma_Sources_Sci._Technol._31_094002.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/909542/files/Postprint_Kotov_Vibrational%20relaxation%20and%20triggering.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:909542 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)6121 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0 |
914 | 1 | _ | |y 2022 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-17 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-17 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLASMA SOURCES SCI T : 2021 |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-17 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-17 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-17 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|