000909543 001__ 909543
000909543 005__ 20240709074022.0
000909543 0247_ $$2doi$$a10.1029/2022JA030572
000909543 0247_ $$2ISSN$$a0148-0227
000909543 0247_ $$2ISSN$$a2156-2202
000909543 0247_ $$2ISSN$$a2169-9380
000909543 0247_ $$2ISSN$$a2169-9402
000909543 0247_ $$2Handle$$a2128/31807
000909543 0247_ $$2WOS$$aWOS:000850891500001
000909543 037__ $$aFZJ-2022-03232
000909543 082__ $$a520
000909543 1001_ $$00000-0001-6937-0796$$aForbes, Jeffrey M.$$b0$$eCorresponding author
000909543 245__ $$aThe Global Monsoon Convective System as Reflected in Upper Atmosphere Gravity Waves
000909543 260__ $$aHoboken, NJ$$bWiley$$c2022
000909543 3367_ $$2DRIVER$$aarticle
000909543 3367_ $$2DataCite$$aOutput Types/Journal article
000909543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662540782_4755
000909543 3367_ $$2BibTeX$$aARTICLE
000909543 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909543 3367_ $$00$$2EndNote$$aJournal Article
000909543 520__ $$aThe concept of a global monsoon system collectively comprising 6 tropical regions is applied to Outgoing Longwave Radiation (OLR) as a proxy for convectively generated gravity waves (GWs), leading to the global monsoon convective system (GMCS). The six tropical regions are North and South Africa, Central and South America, and the South Asia-Pacific and Malay Archipelago/Australia-Pacific regions. The extended GMCS is considered in terms of gravity wave momentum fluxes (GWMFs) at 30, 50, 70, and 90 km altitude during the summer season in both hemispheres between December 2016, and August 2020. The GWMFs are inferred from TIMED/SABER temperature measurements. Intermonthly, interseasonal, and interannual variations in monthly mean GWMFs are interpreted in terms of OLR as a proxy for the spatial-temporal variability of GW sources, and in terms of MERRA2 zonal winds that quantify the influences of changes in background propagation conditions. It is found that temporal variations in GWMFs associated with the GMCS as a whole are not highly correlated with OLR, but at 30, 50, and 70 km are quantitatively linked to Doppler-shifting effects by local winds, wind filtering at 15 km altitude, and “instrument filtering.” These effects are also compared and examined in the context of GW variances at 50 km in Southern Hemisphere summer measured by the CIPS instrument on the AIM satellite, which measures a different part of the GW spectrum. The SABER GWMF response at 90 km is irregular and variable, but sometimes consists of 3- and 4-peaked structures in longitude that may reflect nonmigrating tide influences on GW propagation conditions.
000909543 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000909543 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909543 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b1
000909543 7001_ $$00000-0003-0900-9581$$aZhang, Xiaoli$$b2
000909543 773__ $$0PERI:(DE-600)2033040-6$$a10.1029/2022JA030572$$gVol. 127, no. 9$$n9$$pe2022JA030572$$tJournal of geophysical research / Space physics$$v127$$x0148-0227$$y2022
000909543 8564_ $$uhttps://juser.fz-juelich.de/record/909543/files/933329_1_unknown_upload_9932317_rd6fjq.pdf$$yPublished on 2022-08-26. Available in OpenAccess from 2023-08-26.
000909543 8564_ $$uhttps://juser.fz-juelich.de/record/909543/files/JGR%20Space%20Physics%20-%202022%20-%20Forbes%20-%20The%20Global%20Monsoon%20Convective%20System%20as%20Reflected%20in%20Upper%20Atmosphere%20Gravity%20Waves.pdf$$yPublished on 2022-08-26. Available in OpenAccess from 2023-08-26.
000909543 909CO $$ooai:juser.fz-juelich.de:909543$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b1$$kFZJ
000909543 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000909543 9141_ $$y2022
000909543 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26
000909543 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26
000909543 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000909543 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-26
000909543 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-26$$wger
000909543 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000909543 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26
000909543 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-26
000909543 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-SPACE : 2019$$d2021-01-26
000909543 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000909543 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26
000909543 920__ $$lyes
000909543 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000909543 9801_ $$aFullTexts
000909543 980__ $$ajournal
000909543 980__ $$aVDB
000909543 980__ $$aUNRESTRICTED
000909543 980__ $$aI:(DE-Juel1)IEK-7-20101013
000909543 981__ $$aI:(DE-Juel1)ICE-4-20101013