000909558 001__ 909558
000909558 005__ 20240712084459.0
000909558 0247_ $$2doi$$a10.1002/smtd.202200493
000909558 0247_ $$2Handle$$a2128/32137
000909558 0247_ $$2pmid$$a35973943
000909558 0247_ $$2WOS$$aWOS:000840898300001
000909558 037__ $$aFZJ-2022-03247
000909558 082__ $$a620
000909558 1001_ $$00000-0002-4981-975X$$aLaird, Jamie S.$$b0$$eCorresponding author
000909558 245__ $$aIntensity Modulated Photocurrent Microspectrosopy for Next Generation Photovoltaics
000909558 260__ $$aWeinheim$$bWILEY-VCH Verlag GmbH & Co. KGaA$$c2022
000909558 3367_ $$2DRIVER$$aarticle
000909558 3367_ $$2DataCite$$aOutput Types/Journal article
000909558 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666867702_22093
000909558 3367_ $$2BibTeX$$aARTICLE
000909558 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909558 3367_ $$00$$2EndNote$$aJournal Article
000909558 520__ $$aIn this report, a large-area laser beam induced current microscope that has been adapted to perform intensity modulated photocurrent spectroscopy (IMPS) in an imaging mode is described. Microscopy-based IMPS method provides a spatial resolution of the frequency domain response of the solar cell, allowing correlation of the optoelectronic response with a particular interface, bulk material, specific transport layer, or transport parameter. The system is applied to study degradation effects in back-contact perovskite cells where it is found to readily differentiate areas based on their markedly different frequency response. Using the diffusion-recombination model, the IMPS response is modeled for a sandwich structure and extended for the special case of lateral diffusion in a back-contact cell. In the low-frequency limit, the model is used to calculate spatial maps of the carrier ambipolar diffusion length. The observed frequency response of IMPS images is then discussed.
000909558 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000909558 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909558 7001_ $$0P:(DE-Juel1)180551$$aRavishankar, Sandheep$$b1
000909558 7001_ $$00000-0002-2266-2713$$aRietwyk, Kevin J.$$b2
000909558 7001_ $$aMao, Wenxin$$b3
000909558 7001_ $$00000-0003-2922-4959$$aBach, Udo$$b4
000909558 7001_ $$aSmith, Trevor A.$$b5
000909558 773__ $$0PERI:(DE-600)2884448-8$$a10.1002/smtd.202200493$$gp. 2200493 -$$n9$$p2200493$$tSmall methods$$v6$$x2366-9608$$y2022
000909558 8564_ $$uhttps://juser.fz-juelich.de/record/909558/files/Small%20Methods%20-%202022%20-%20Laird%20-%20Intensity%20Modulated%20Photocurrent%20Microspectrosopy%20for%20Next%20Generation%20Photovoltaics.pdf$$yOpenAccess
000909558 8564_ $$uhttps://juser.fz-juelich.de/record/909558/files/submitted_version_IMPS%20Imaging%20of%20Perovskite%20Cells%20JSL.docx$$yOpenAccess
000909558 909CO $$ooai:juser.fz-juelich.de:909558$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909558 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180551$$aForschungszentrum Jülich$$b1$$kFZJ
000909558 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000909558 9141_ $$y2022
000909558 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000909558 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000909558 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-31$$wger
000909558 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000909558 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909558 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL METHODS : 2021$$d2022-11-12
000909558 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000909558 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000909558 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000909558 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000909558 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000909558 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000909558 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000909558 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bSMALL METHODS : 2021$$d2022-11-12
000909558 920__ $$lyes
000909558 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000909558 9801_ $$aFullTexts
000909558 980__ $$ajournal
000909558 980__ $$aVDB
000909558 980__ $$aUNRESTRICTED
000909558 980__ $$aI:(DE-Juel1)IEK-5-20101013
000909558 981__ $$aI:(DE-Juel1)IMD-3-20101013