Hauptseite > Publikationsdatenbank > Intensity Modulated Photocurrent Microspectrosopy for Next Generation Photovoltaics > print |
001 | 909558 | ||
005 | 20240712084459.0 | ||
024 | 7 | _ | |a 10.1002/smtd.202200493 |2 doi |
024 | 7 | _ | |a 2128/32137 |2 Handle |
024 | 7 | _ | |a 35973943 |2 pmid |
024 | 7 | _ | |a WOS:000840898300001 |2 WOS |
037 | _ | _ | |a FZJ-2022-03247 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Laird, Jamie S. |0 0000-0002-4981-975X |b 0 |e Corresponding author |
245 | _ | _ | |a Intensity Modulated Photocurrent Microspectrosopy for Next Generation Photovoltaics |
260 | _ | _ | |a Weinheim |c 2022 |b WILEY-VCH Verlag GmbH & Co. KGaA |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1666867702_22093 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this report, a large-area laser beam induced current microscope that has been adapted to perform intensity modulated photocurrent spectroscopy (IMPS) in an imaging mode is described. Microscopy-based IMPS method provides a spatial resolution of the frequency domain response of the solar cell, allowing correlation of the optoelectronic response with a particular interface, bulk material, specific transport layer, or transport parameter. The system is applied to study degradation effects in back-contact perovskite cells where it is found to readily differentiate areas based on their markedly different frequency response. Using the diffusion-recombination model, the IMPS response is modeled for a sandwich structure and extended for the special case of lateral diffusion in a back-contact cell. In the low-frequency limit, the model is used to calculate spatial maps of the carrier ambipolar diffusion length. The observed frequency response of IMPS images is then discussed. |
536 | _ | _ | |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121) |0 G:(DE-HGF)POF4-1215 |c POF4-121 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ravishankar, Sandheep |0 P:(DE-Juel1)180551 |b 1 |
700 | 1 | _ | |a Rietwyk, Kevin J. |0 0000-0002-2266-2713 |b 2 |
700 | 1 | _ | |a Mao, Wenxin |b 3 |
700 | 1 | _ | |a Bach, Udo |0 0000-0003-2922-4959 |b 4 |
700 | 1 | _ | |a Smith, Trevor A. |b 5 |
773 | _ | _ | |a 10.1002/smtd.202200493 |g p. 2200493 - |0 PERI:(DE-600)2884448-8 |n 9 |p 2200493 |t Small methods |v 6 |y 2022 |x 2366-9608 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/909558/files/Small%20Methods%20-%202022%20-%20Laird%20-%20Intensity%20Modulated%20Photocurrent%20Microspectrosopy%20for%20Next%20Generation%20Photovoltaics.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/909558/files/submitted_version_IMPS%20Imaging%20of%20Perovskite%20Cells%20JSL.docx |
909 | C | O | |o oai:juser.fz-juelich.de:909558 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180551 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1215 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-31 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-31 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-31 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SMALL METHODS : 2021 |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-12 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-12 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b SMALL METHODS : 2021 |d 2022-11-12 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|