001     909568
005     20230310131318.0
024 7 _ |a 10.1002/aelm.202200448
|2 doi
024 7 _ |a 2128/32064
|2 Handle
024 7 _ |a WOS:000822534500001
|2 WOS
037 _ _ |a FZJ-2022-03250
082 _ _ |a 621.3
100 1 _ |a Stecconi, Tommaso
|0 0000-0001-5385-3486
|b 0
|e Corresponding author
245 _ _ |a Filamentary TaO x /HfO 2 ReRAM Devices for Neural Networks Training with Analog In‐Memory Computing
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH Verlag GmbH & Co. KG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666081703_30577
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The in-memory computing paradigm aims at overcoming the intrinsic inefficiencies of Von-Neumann computers by reducing the data-transport per arithmetic operation. Crossbar arrays of multilevel memristive devices enable efficient calculations of matrix-vector-multiplications, an operation extensively called on in artificial intelligence (AI) tasks. Resistive random-access memories (ReRAMs) are promising candidate devices for such applications. However, they generally exhibit large stochasticity and device-to-device variability. The integration of a sub-stoichiometric metal-oxide within the ReRAM stack can improve the resistive switching graduality and stochasticity. To this purpose, a conductive TaOx layer is developed and stacked on HfO2 between TiN electrodes, to create a complementary metal-oxide-semiconductor-compatible ReRAM structure. This device shows accumulative conductance updates in both directions, as required for training neural networks. Moreover, by reducing the TaOx thickness and by increasing its resistivity, the device resistive states increase, as required for reduced power consumption. An electric field-driven TaOx oxidation/reduction is responsible for the ReRAM switching. To demonstrate the potential of the optimized TaOx/HfO2 devices, the training of a fully-connected neural network on the Modified National Institute of Standards and Technology database dataset is simulated and benchmarked against a full precision digital implementation.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|x 0
|f POF IV
536 _ _ |a MANIC - Materials for Neuromorphic Circuits (861153)
|0 G:(EU-Grant)861153
|c 861153
|x 1
|f H2020-MSCA-ITN-2019
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 2
536 _ _ |a BMBF-16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 3
536 _ _ |a BMBF-16ME0404 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0404)
|0 G:(DE-82)BMBF-16ME0404
|c BMBF-16ME0404
|x 4
536 _ _ |a BMBF-03ZU1106AB - NeuroSys: "Memristor Crossbar Architekturen (Projekt A) - B" (BMBF-03ZU1106AB)
|0 G:(DE-Juel1)BMBF-03ZU1106AB
|c BMBF-03ZU1106AB
|x 5
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 6
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Guido, Roberto
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Berchialla, Luca
|0 P:(DE-HGF)0
|b 2
700 1 _ |a La Porta, Antonio
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Weiss, Jonas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Popoff, Youri
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Halter, Mattia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Sousa, Marilyne
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Horst, Folkert
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dávila, Diana
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Drechsler, Ute
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 11
700 1 _ |a Offrein, Bert Jan
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Bragaglia, Valeria
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1002/aelm.202200448
|g p. 2200448 -
|0 PERI:(DE-600)2810904-1
|n 10
|p 2200448 -
|t Advanced electronic materials
|v 8
|y 2022
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/909568/files/Adv%20Elect%20Materials%20-%202022%20-%20Stecconi%20-%20Filamentary%20TaOx%20HfO2%20ReRAM%20Devices%20for%20Neural%20Networks%20Training%20with%20Analog.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909568
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ELECTRON MATER : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21