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Primary Multiparametric Quantitative Brain 
MRI: State-of-the-Art Relaxometric  
and Proton Density Mapping Techniques

Abstract
This review on brain multiparametric quantitative MRI (MP-qMRI) focuses on the primary subset of quantita-
tive MRI (qMRI) parameters that represent the mobile (“free”) and bound (“motion-restricted”) proton pools. 
Such primary parameters are the proton densities, relaxation times, and magnetization transfer parameters. 
Diffusion qMRI is also included because of its wide implementation in complete clinical MP-qMRI application. 
MP-qMRI advances were reviewed over the past 2 decades, with substantial progress observed toward ac-
celerating image acquisition and increasing mapping accuracy. Areas that need further investigation and refi-
nement are identified as follows: (a) the biologic underpinnings of qMRI parameter values and their changes 
with age and/or disease and (b) the theoretical limitations implicitly built into most qMRI mapping algorithms 
that do not distinguish between the different spatial scales of voxels versus spin packets, the central physical 
object of the Bloch theory. With rapidly improving image processing techniques and continuous advances in 
computer hardware, MP-qMRI has the potential for implementation in a wide range of clinical applications. 
Currently, three emerging MP-qMRI applications are synthetic MRI, macrostructural qMRI, and microstructural 
tissue modeling.
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Contemporary clinical MRI consists of a mosaic of diffe-
rently weighted images, which carry qualitative information 
based on nonstandardized pixel value scales. Quantitative 
MRI (qMRI) seeks to quantify a limited number of tissue pa-
rameters at the pixel scale and display quantitative images 
known as maps. Though early attempts at qMRI were slow 
and often resulted in poor map quality, a confluence of fac-
tors has reignited interest. One factor is the increased pres-
sure for pixel value standardization. Expanding health care 
and computer networks have streamlined digital access to 
images acquired across sites and scanners, but differen-
ces in scanners and protocols make medical comparisons
difficult. This hinders optimum patient care and limits the 
biologic insight of MRI data. Another factor for renewed in-
terest in qMRI is the development of fast multiparametric 
acquisition methods, where accelerated or undersampled 
images are combined with physical models to reconstruct 
images of multiple qMRI tissue parameters rapidly. qMRI 
maps can be assessed visually or processed to simulate 
any desired image acquisition protocol, a process known 
as synthetic MRI. Multiparametric qMRI (MP-qMRI) also fa-
cilitates the use of thresholds or region of interest averages
as diagnostic criteria that can be assessed in multisite stu-
dies. Perhaps more importantly, there is increasing eviden-
ce that MP-qMRI of proton density (PD), T1, and T2 could 
provide the normal distributions of these parameters, which
may help assess neurologic diseases (1) as deviations 
from healthy brain development across the human lifespan 
(2–5). Such quantitative assessment could be sensitive for 
detecting early disease.
The purpose of this review within the MRI physics context
is to provide a structured survey of MP-qMRI of the brain, 
with a focus on technical developments for a subset of pa-
rameters of the mobile (“free”) and macromolecular (“moti-
on-restricted”) proton pools, specifically the PDs, relaxation 
times, and magnetization transfer (MT) parameters. We will 
discuss diffusion MRI (dMRI) because of its high clinical 
importance and because the basic MP-qMRI field incorpo-
rates diffusion parameters (6–8). For deeper insights into 
the physics and applications of dMRI, the

Abbreviations
ADC = apparent diffusion coefficient, BPP = Bloembergen, 
Purcell, and Pound, CSF = cerebrospinal fluid, dMRI = dif-
fusion MRI, GM = gray matter, MP-qMRI = multiparametric 
qMRI, MRF = MR fingerprinting, MT = magnetization trans-
fer, MTM = microstructural tissue modeling, PD = proton 
density, qMRI = quantitative MRI, WM = white matter

Summary
Multiparametric quantitative MRI of the brain has the po-
tential for implementation in a wide range of clinical appli-
cations.

Essentials
•	 Modern multiparametric quantitative MRI (MP-qMRI) 

frameworks consist of fast multicontrast pulse sequen-
ces and mapping algorithms that model the pulse se-
quence with use of MRI theory.

•	 Whole-brain MP-qMRI frameworks encompassing 
proton density, MR relaxation times, and the diffusion 
property may function as a complete neuroimaging 
protocol in less than 10 minutes of acquisition time.

•	 Three promising MP-qMRI applications are synthetic 
MRI, macrostructural quantitative MRI, and micros-
tructural tissue modeling.

reader is directed to a review by Le Bihan and Johansen-
Berg (9). The present review on MP-qMRI fits within the 
goals of the initiative of the Quantitative Imaging Biomar-
kers Alliance (10), which seeks to improve the value and 
practicality of quantitative imaging biomarkers by reducing 
variability across devices, sites, patients, and time.

Physics Context
qMRI Frameworks
qMRI parameters can be mapped individually or in groups 
with MP-qMRI frameworks that consist of an MP-qMRI pul-
se sequence and a theory-matched qMRI mapping algo-
rithm. Theoretical matching consists of modeling the pulse 
sequence with use of the Bloch theory (11), with possible 
extensions to include the effects of MT (12) and/or diffusion 
(13). Early MP-qMRI frameworks were described soon af-
ter the advent of clinical MRI (14–17) before the advent 
of scanning acceleration techniques. Therefore, the quan-
tification and imaging acquisition were time consuming 
and clinically impractical compared with weighted (quali-
tative) MRI pulse sequences, such as T1- and T2-weight-
ed imaging. Additionally, early qMRI maps were often less 
appealing visually relative to qualitative weighted images 
(15,16,18). Contemporary MP-qMRI frameworks bear im-
provements in speed, quantitative accuracy, and multipa-
rametricity. Several frameworks could be used as a com-
plete neuroimaging protocol with a total scan time of about  
10 minutes (7,19,20).
Numerous fast MP-qMRI frameworks have been described 
in the past 3 decades (Tables 1, 2). We identify two distinct 
and heterogeneous framework types based on pulse se-
quence design and the type of imaging data acquired. First, 
fast indirect frameworks with fully reconstructed weighted 
images are used as an intermediate step for map genera-
tion. Second, fast direct qMRI frameworks using imaging 
data fragments–“fingerprints” and “tasks”–are used directly 
for map generation. This is the case in MR fingerprinting 
(MRF) (21–24) and MR multitasking (7), respectively.
Because the magnetization dynamics during the pulse se-
quence execution obey the laws of MR theory, the purpose 
of the qMRI algorithm is to model the pulse sequence ac-
cording to these laws and use the model for inferring the 
qMRI parameter values that best describe the experimen-
tal data on a voxel-by-voxel basis. Accordingly, qMRI para-
meter estimates are generated by associating theoretical 
predictions of the mapping algorithm with experimental 
data generated by the MP-qMRI pulse sequence. Increa-
sing the number of qMRI parameters of a multiparametric 
MRI method can necessitate a longer scan time; however, 
the added scan time is typically less than serially acquiring 
individual parametric qMRI measurements. Furthermore, 
the benefits of increasing multiparametricity are conside-
rable if the objective is to build a comprehensive quantita-
tive representation of the patient. Such multidimensional 
quantitative representation modeling of the patient could 
serve as a virtual analog of each patient for a variety of 
postprocessing applications that broaden the scope of 
qMRI. Important image processing applications include (a) 
synthetic MRI for enhanced and comprehensive visual ex-
ploration of contrast weightings, (b) macrostructural qMRI 
for data reduction and the generation of data reports that 
include volumetrics and tissue quality measures, and (c) 
microstructural tissue modeling (MTM) for deciphering the 
intravoxel milieu.
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Spatial Scales
MRI physics deals with a wide range of spatial scales that 
span about 12 orders of magnitude, starting from 1H nuclei 
at a spatial scale of 10-6 nm to that of the water molecule 
at a spatial scale of 10-1 nm to the spatial scale of spin 
packets at about 10 nm (see next paragraph) and up to 
the spatial scale of current clinical imaging voxels of less 
than 106 nm (,1 mm). qMRI algorithms use primarily semic-
lassical MR theory (ie, the Bloch equation, with possible 
extensions to include the effect of diffusion with the Bloch-

Torrey equation [13] or MT and chemical exchange with the 
Bloch-McConnell equations [12]).
Spin packets are subvoxel moieties similar to spin isochro-
mats, but instead of being defined by a unique precession 
frequency, spin packets are associated with a unique dif-
fusion coefficient (25) and therefore are characterized by 
a unique molecular correlation time (τc), given that τc 1/D, 
where D is the diffusion coefficient. The correlation time 
is a unifying concept that links the three spatial scales of 
relevance to qMRI theory (Fig 1). The spatial scale of spin 
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packets is imprecisely defined; on one hand, Bloch theo-
ry requires spin packets to be much larger than the water 
molecule so that number of contained spins is sufficiently 
large and the laws of statistical mechanics apply. On the 
other hand, the theory also calls for microscopic spin pa-
ckets so that the intravoxel magnetization distribution can 
be modeled as a continuous function of space and time. 
In a hypothetical model, we can imagine spin packets as 
small cubes containing about 10 000 water molecules to 
guarantee the appropriateness of the statistical mechanics 
description. Considering that the diameter of a water mo-
lecule is approximately 0.34 nm, the linear dimension of 
such a spin packet is estimated to be about 10 nm, which is 
about one-third the spacing between myelin sheaths (26).
Importantly, the mismatch in voxel scale to spin-packet 
scale results in major inconsistencies in most qMRI algo-
rithms, which compare theoretical information pertaining 

cerebrospinal fluid (CSF); however, its accuracy diminis-
hes with increasing tissue complexity. Furthermore, the 
BPP theory did not account for the T1 contribution to T2. 
Consequently, the BPP theory leads to T2 overestimation 
for CSF well over experimental values of T2 = 2.9 seconds 
at 37°C (36–38). The theoretical extension by Dixon et al 
(40) included this T2 relaxation mechanism, resulting in the 
spin-packet (ie, sp) formula:

As shown by computer simulations (Fig 2), Equation (1) 
combined with the BPP relaxation rate equations (41) cor-
rectly predict (T2)sp<(T1)sp for CSF at τc of 1.5 psec. The first 
term in Equation (1) is the adiabatic term and represents 
the relaxation rate due to loss of signal coherence caused 
by dephasing processes, and the second nonadiabatic 
term is the T1 contribution to T2 that results from the loss  
of signal-generating spins in the transverse state, which 
occurs at a rate of (R1)sp/2.

to the spin-packet scale against voxel scale experimental 
information. This theoretical inconsistency needs to be ad-
dressed in future qMRI algorithm developments by using a 
realistic description of the actual voxel shapes of Fourier 
transform imaging (Fig 1) by means of the voxel sensitivity 
function (27). In addition, such theoretical efforts could be 
useful for probing the intravoxel milieu with relaxometry-
based mapping of tissue microstructure (28,29), which has 
been traditionally investigated using dMRI (30–34).

Relaxation Theory
The quantum theory that first explained the main MR rela-
xation mechanisms was proposed by Bloembergen, Pur-
cell, and Pound (BPP) (35). It revealed that MR relaxation 
is caused by protondipole interactions with the time-varying 
magnetic field of the neighbor protons. The BPP theory ac-
curately models simple aqueous systems, such as healthy

Fast-Exchange Two-State Tissue Model 
The nonaqueous tissue components of the central nervous 
system (ie, lipids, proteins, and nucleic acids) account for 
15%–30% of its mass (42). The other 70%–85% is of four 
types: CSF spaces, intracellular water, extracellular water, 
and water between myelin bilayers. The MR properties 
of these water pools are different and present increasing 
theoretical modeling complexities, from CSF to intra- or ex-
tracellular water to water between myelin bilayers.
The BPP-Dixon theory accurately predicts the T1 and T2 va-
lues of healthy CSF. However, relaxation phenomena are 
complicated for gray matter (GM) and more so for white 
matter (WM) due to the intricate relaxation-MT effects of 
myelin. GM-WM contrast in most MRI sequences is known 
to reflect mainly the spatial distributions of myelin and iron, 
which have been shown to overlap in many brain regions, 
particularly in the cortex (43). The B0 dependencies of 1/T1 
and 1/T2 of unmyelinated brain tissue can be explained with 
the fast-exchange twostate model (41), which assumes 
two spin-packet types: a waterlike free pool with a B0-in-
dependent T1f value close to tap water (approximately 2–3 

Figure 1: Spatial scales in MRI theory. (A) Three-dimensional rendering of the theoretical voxel shape in Fourier MRI as 
represented by the voxel sensitivity function. (B) Three spatial scales and the associated theories: from quantum physics 
of dipolar interactions between individual spins (bottom) to semiclassical physics describing spin packets with use of the 
Bloch equation (middle) to imaging theory describing voxels (top). Microstructural tissue modeling (MTM) is a venue for 
deconstructing voxels into spin packets. Knowing the voxel sensitivity function can be useful for modeling the actual intra-
voxel structure and providing a link between the mesoscopic and voxel scales.
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seconds) (41) and a much smaller bound pool fraction with 
B0-dependent T1b. The two pools exchange water molecu-
les with a short residence time in the bound state on the 
nanosecond scale. In the fast-exchange two-state model, 
1/T1 is determined predominantly by molecular interactions 
between macromolecules and a bound hydration layer, and 
1/T2 is governed mainly by the exchange diffusion of water 
between the bound layer and a free water phase. Despite 
the high tissue complexity, relatively straightforward empi-
rical formulas can be used for describing the main depen-
dencies of 1/T1 and 1/T2 on B0, myelin, and iron content 
(41,44–47).

to the concept of proton pools of “equivalent” spin packets. 
Mapping the properties of these pools can provide import-
ant indicators of tissue microstructure. The motion-restric-
ted pool of protons within larger molecules, such as non 
queous myelin protons, is not directly detectable because 
of their short T2s but has a major influence on tissue rela-
xation and signal through rapid MT and/or magnetization 
exchange processes with freer pools (Fig 4). To illustrate 
the current state-of-the-art refinement in multipool WM 
modeling using ex vivo experimentation, consider the four-
pool model studied by Manning et al (47). The model (Fig 
3) includes protons of nonaqueous myelin (pool 1), water 
between myelin bilayers (pool 2), intra- and extracellular 
water (pool 3), and nonaqueous nonmyelin protons (pool 
4). In vivo imaging of multipool relaxation phenomena at 
such a level of complexity is not practical with current clini-
cal technologies.

Multi–Proton Pool Models
Myelinated tissue modeling at the nanometer scale would 
be a formidable undertaking even if the underlying microa-
natomic blueprints were accessible in vivo with use of hy-
pothetical ultra–high spatial resolution MRI. This is current-
ly the realm of ex vivo technologies, such as electron beam 
microscopy (Fig 3), which necessitates ex vivo samples 
placed in a vacuum. 
A practical tissue modeling strategy is to forgo the intra- 
voxel positional information of individual spin packets 
and instead categorize these by T2; this leads to the 
concept of proton pools of “equivalent” spin packets. 

The simpler binary spin-bath model (48–51) has been wi-
dely applied to MT acquisitions, where off-resonance sa-
turation is used to saturate the restricted large molecule 
pools. It describes voxels containing two proton pool types: 
free with a narrow bandwidth and bound with a broad band-
width (Fig 4). In this case, the number of qMRI parameters 
to be determined is more manageable: (a) measures of PD 
of the free and the motion-restricted proton pools and (b) 
measures of magnetic interactions between protons and 
the molecular environment as well as magnetic interactions 
between the free and restricted pools.
Substantial progress has been made in this field in the past
20 years. Paraphrasing a recent review article by Sled (51),
MT contrast is well established among the tools for asses-
sing tissue microstructure in the brain. While much of the 
work has made use of MT ratios, improvements in the tech-
nology for rapidly acquiring MT-weighted images have made 

Figure 2: Bloembergen, Purcell, and Pound–Dixon theory. Computer simulations show T1 and T2 curves as functions 
of the correlation time (τc) for several values of the main magnetic field in the range of 50 mT to 7.0 T. In the short 
correlation time regimen of cerebrospinal fluid (CSF) and the free pool of tissue, the T1 and T2 curves are independent 
of B0 and decrease as functions of increasing correlation time. Following a transition range, the T1 and T2 curves 
show opposite dependencies on the correlation time. These curves are valid for 1H nucleus in any tissue environment 
at the spatial scale of spin packets, but not necessarily at the much larger spatial scale of voxels, depending on the 
spatial scalability of the voxel. A typical tissue would have a distribution of correlation times such as the one shown in 
cyan: free (narrow peak) and potentially broad macromolecular feature. Interpool magnetization transfer (MT) and/or 
magnetization exchange (ME) effects lead to B0 dependencies of the relaxation times. Horizontal lines indicate the 
detection limits for conventional MRI (T2,>1 msec) and ultrashort echo time (UTE-MRI) (T2,>15 μsec). Mag = magnetic.



6

the quantification of MT model parameters feasible within 
a clinically compatible scan time. Further characterization 
of the restricted large molecular pool is also proving pos-
sible. Introduced in the past decade, inhomogeneous MT 
contrast (52) reflects the presence and decay of a property 
known as dipolar order (53), which can provide new infor-

mation on the structure and mobility of the restricted pool.  
It has the potential to expand these applications by impro-
ving the specificity, for example, to assess cortical mye-
loarchitecture (54). Methods for including quantitative  
introduced inhomogeneous MT into MRF studies have also 
been introduced (55).

Figure 3: The four-pool model of white matter. The four 1H-nuclei pools are depicted with use of a transmission elec-
tron micrograph of a myelinated axon in cross-section. The myelin layer (concentric) surrounds the axon of a neuron, 
showing cytoplasmatic organs inside. The nonaqueous pools 1 and 4 are detectable only with ultrashort echo time pul-
se sequences due to the extremely short T2s. The micrograph of this cadaveric tissue sample was generated and de-
posited into the public domain by the Electron Microscopy Facility at Trinity College, Hartford, Connecticut (http://www.
trincoll.edu). IEW = intra- and extracellular water, M = myelin protons, MW = myelin water, NM = nonmyelin protons.

Figure 4: Magnetization transfer (MT) basics. (A, B) Graphs of the free and the restricted-motion pools illustrate the simplest MT imaging experi-
ment in which an off-resonance radiofrequency pulse (red arrow) is used to saturate the semisolid pool (A), resulting subsequently in a net decrease 
of the liquid pool proton density (B) available for signal generation, hence additional MT contrast. Mz = z-component of the magnetization. (C–G) 
Quantitative MT images of the adult human brain in the axial plane. The parameter maps shown are the pool size ratio F, forward exchange rate 
kf, spin-lattice relaxation rate of the free pool, spin-spin relaxation rate of the free pool, and spin-spin relaxation rate of the restricted-motion pool. 
(Brain images reproduced from reference 51. Note: The referenced article is available under the Creative Commons CC-BY-NC-ND license, which 
permits noncommercial use of the work as published, without adaptation or alteration, provided the work is fully attributed.)
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MP-qMRI Frameworks
Rapid MP-qMRI 
The workflow of MP-qMRI frameworks generating separate 
volumes representative of Np parameters with matrix size 
= (Nx, Ny, Nz) is:

 
The initial experimental data consist of Nacq signal samples 
in the Fourier domain, and the MP-qMRI processing work-
flow can include regridding for noncartesian acquisitions, 
inverse Fourier transformation, and parameter estimation. 
Conventional MP-qMRI frameworks (Table 1) first generate 
full-frame weighted images that can be interpreted clini-
cally, and in a second step, these images are processed 
for parameter map generation. In contradistinction, direct 
frameworks (Table 2) do not generate the intermediate full-
frame images and proceed to parameter mapping directly.
Methods for shortening the time of acquisition of MPqMRI
pulse sequences are key for promoting clinical acceptance.
Also crucial is the development of accurate and automated 
image processing methods with short processing times. 
Reducing Nacq and/or reducing the effective time between
samples results in a shorter time of acquisition

The most measurement-efficient pulse sequences have 
echoplanar imaging readouts or hybrid spin-echo readouts,
including rapid acquisition with relaxation enhancement, 
fast (or turbo) spin-echo, or fast gradient-echo sequences, 
which can also operate in the steady state. Additionally, si-
multaneous multislice techniques can be used to further 

accelerate two-dimensional pulse sequences (56,57). 
Techniques for reducing Nacq include parallel imaging using 
receiver coil spatial encoding (58) and compressed sen-
sing using sparse acquisitions (59). Not surprisingly, rapid 
MP-qMRI frameworks (Tables 1, 2) use combinations of
the aforementioned fast techniques.

Fast Indirect (Conventional) Frameworks
Neglecting partial volume effects, radiofrequency transmit 
inhomogeneities, and off-resonance effects, the weighted 
pixel values (ie, pv) are modeled as:

where PDvoxel is the main anatomic factor and is multiplied 
by two spatially dependent factors. First, the pulse sequen-
ce weighting factor (ie, psw) is a function of scanner control 
variables and the qMRI parameters. Scanner control va-
riables include the repetition time (TR), the echo time (TE), 
and the flip angle (FA). Second, the receiver coil sensitivity 
profile, RPvoxel, is a smoothly varying function of space and 
represents an important source of uncertainty in PD map-
ping. The voxel volume is denoted by δV.
Other than PD, most qMRI tissue parameters can be quan-
tified by differential weighting, which is a general qMRI 
principle motivated by Equation (3). Two or more images 
differing only in their weighting to the targeted parameter 
are acquired with otherwise identical experimental settings 
and processed with an algorithm that estimates the qMRI 
parameter value (Fig 5) that accounts for the weighting 
differences between the input images (Table 1). qMRI by  

Figure 5: Multiparametric quantitative MRI (MP-qMRI) example with the triple turbo spin-echo pulse sequence. Same-section directly 
acquired images and quantitative+MRI parameter maps in the axial plane. The left column shows the three images directly acquired 
with (A) proton density weighting (PDw), (B) T2 weighting (T2w), and+(C) T1 weighting (T1w). The insert on the right shows the same-sec-
tion MP-qMRI maps: (D) the cerebrospinal fluid–normalized proton density map (nPD) and (E, F)relaxation rate maps. Note that the in-
verse white matter (WM)–to–gray matter contrast in the relaxation rate maps versus (G, H) the relaxation time maps, in which WMis not 
only brighter but also shows marked texture. Furthermore, the WM texture of the longitudinal relaxation rate (R1) map is different from that 
in the transverse relaxationrate (R2) map. All images are in a 35-year-old healthy male volunteer and were acquired with the 9-minute scan  
(80 contiguous sections; reconstructed voxel = 0.5 x 0.5 x 2 mm) used for the ELGAN-ECHO (Extremely Low Gestational Age Newborns–Environ-
mental influences on Child Health Outcomes) study (103).
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differential weighting is useful because it effectively remo-
ves extraneous information from the parameter estimates, 
and, most importantly, it removes inaccuracies caused by 
inhomogeneities in receiver coil sensitivity profile.
The accuracy of PD mapping is paramount, as it reports 
on water content and provides the anatomic substrate for 
synthetic MRI. PD mapping proceeds in three steps: (a) 
reversing the weightings to T1 and T2 (or T2

*) of a directly 
acquired image selected based on the highest signal-to-
noise ratio and overall image quality, (b) correcting the coil 
receiver profile (60), and (c) scaling the PD map to a spati-
ally invariant factor that calibrates all pixel values relative to 
a known pixel value, usually an external sample within the 
field of view or that of healthy CSF. PD mapping difficulties 
stem primarily from residual uncertainties in the T1 and T2 
(or T2

*) estimates, imperfections of the pulse sequence mo-
del (particularly in the estimation of actual flip angles and 
insufficiently spoiled CSF signals), and unaccounted intrin-
sic MT effects. In the healthy brain, 1/PD is proportional to 
1/T1 (61–65), and this simple relationship provides an ad-
ditional method for checking PD mapping accuracy (Fig 6).
Detection sensitivity of short T2 species can be by indirect
means via MT imaging (47) or directly with ultrashort echo 
time pulse sequences (ie, echo time > 15 µsec). PD mea-
sures obtained with standard pulse sequences defined as
echo time less than 1 msec are underestimations of the  

total PD, which additionally includes slowly moving aqueous 
protons as well as nonaqueous protons (up to 30% in WM).
Nonaqueous species, including protons of lipids, proteins, 
and nucleic acids, become visible in the ultrashort echo 
time regimen (66). Ample experimental evidence on devia-
tions from simple exponential relaxation has led to tech-
niques for quantifying myelin water content (29,42,67), a 
biologic marker for conditions affecting myelin.
Fast indirect MP-qMRI frameworks use regular weighted 
pulse sequences modified to acquire several weighted 
images per scan. Such directly acquired images have dif-
ferent weightings on the target qMRI parameters and bear 
identical geometry and receiver gain settings. Multiple fra-
meworks using variations of clinical pulse sequences, from
rapid gradient-echo to steady-state to rapid acquisition with 
relaxation enhancement (fast [turbo] spin-echo) pulse se-
quences, are listed in Tables 1 and 2.

Voxel Types and Partial Volume
Three voxel types posing distinct qMRI processing com-
plexities are conceptualized (Fig 7). Type 1 voxels of 
pure CSF are fully scalable from spin packet to voxel and  
are devoid of MT effects; however, qMRI processing  
difficulties arise because of the exceptionally long T1 of  
4.5 seconds and T2 of 2.9 seconds for CSF. Most fast qMRI 
pulse sequences (Table 1) generate strong differential 

Figure 6: Proton density (PD) mapping. (A) PD map generated with the triple turbo spin-echo pulse sequence and the processing steps out-
lined in the text. Note that the superimposed single-line profile shows negligible residual coil profile effects. (B) Whole-brain histograms 
of PD, T1, and T2 for generated with triple turbo spin-echo (80 consecutive sections; voxel = 0.5 x 0.5 x 2 mm; scan time, approximately  
9 minutes). Accuracy of the PD map is further ascertained by the very similar bimodal PD histogram shape compared with the T1 relaxogram below, 
which is consistent with the empirical 1/PD  1/T1 relationship that holds for healthy brain tissue (see text). This map is in a 41-year-old healthy 
female volunteer and was acquired with the same protocol used for the ELGAN-ECHO (Extremely Low Gestational Age Newborns–Environmental 
influences on Child Health Outcomes) study (103). CSF = cerebrospinal fluid, GM = gray matter, WM = white matter.



9

weighting between WM 
and GM but not neces-
sarily for CSF, which 
has extremely long T1 
and T2 relaxation times. 
Such limitations need 
to be addressed, since 
healthy CSF can serve 
as a qMRI reference 
irrespective of pulse 
sequence – without 
MT effects – and field 
strength.
Type 2 macromolecu-
lar voxels containing 
WM and GM account 
for the great majority 
of voxels in the brain. 
qMRI processing dif-
ficulties stem primar-
ily from the intricate 
intravoxel architectu-
re, thus necessitating 
multipool models and 
MT considerations. 
Furthermore, given the 
fact that BPP spin-pa-
cket formulas cannot 
be scaled up to voxels 
without knowledge of 
the intravoxel micro-
architecture, additional mathematical developments along 
the lines described in diffusion research (25) are needed.
Type 3 voxels are CSF–brain tissue partial-volume voxels
that present a challenge for qMRI algorithms, often resul-
ting in inaccuracies and artifacts in the form of bright outlier 
pixels near boundaries (Fig 8), which contribute to deter-
ring routine clinical use of qMRI maps for diagnosis.

Fast Direct Frameworks
MR Fingerprinting
In MRF, multiple pulse sequence control variables are  

varied pseudorandomly throughout the acquisition to  
sensitize the signal to the targeted qMRI parameters. The  
resulting experimental fingerprints have distinctive sensi-
tization patterns to the targeted parameters. In a typical 
implementation, the qMRI algorithm takes the experimen-
tal fingerprints and finds the closest theoretical fingerprints 
within a prebuilt dictionary of simulated signal evolutions 
associated with a particular combination of qMRI para-
meters. Accordingly, pattern recognition algorithms are 
used to select appropriate tissue properties for each vo-
xel (68). The balanced steady-state free precession pulse  

Figure 7: Voxel types according to spatial scalability. Three different voxel types with increasing inner complexity from left to right (simulation co-
lors: blue = cerebrospinal fluid [CSF], red = gray matter [GM], green = white matter [WM]). Type 1, which contains pure CSF (left), is fully scalable, 
meaning that the quantitative MRI (qMRI) parameters at the spin-packet and voxel scales are equal. Type 2 voxels contain a typical structured soft 
tissue (eg, WM or GM), leading to a distribution of correlation times and magnetization transfer effects, as reviewed in the text. Type 3 voxels are 
difficult for qMRI algorithms because of partial volume effects.

Figure 8: Partial volume artifacts. (A) T1-weighted image is compared with (B) the corresponding T1 map of 
the American College of Radiology MRI accreditation phantom. The arrows and outlines in A and B correspond 
to the magnifications in (C) and (D), respectively. Even though the T1 map has less intensity variation, bright 
pixels near the edges (see magnifications) result in a less natural appearance. As discussed in the text, impro-
ving the visual appearance of quantitative MRI (qMRI) maps is very important for the clinical adoption of qMRI.
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sequence was used in the original and seminal MRF publi-
cation (21). Further research proceeded to replace MRF–
balanced steady-state free precession with the steady-
state free precession sequence, which acquires coherent 
steady-state signals with a constant unbalanced gradient 
moment in each repetition time, thus reducing banding ar-
tifacts. The steady-state free precession sequence does 
not lead to such banding artifacts (22). Further research 
by Chen et al
(20) with the integration of parallel imaging and deep lear-
ning techniques led to a rapid three-dimensional MRF met-
hod with a spatial resolution of 1 mm3, which could provide 
whole-brain T1 and T2 maps in approximately 7 minutes 
(Fig 9).

Multitasking MP-qMRI
A recently developed MP-qMRI framework achieves three-
dimensional combined brain T1, T2, and apparent diffusion 
coefficient (ADC) mapping by incorporating diffusion pre-
paration and phase correction into the T1 and T2 MR multi-
tasking framework (7,8). The three weightings are gene-
rated by means of pulse sequence preparation modules. 
Reported advantages include the mitigation of physiologic 
motion sensitivity relative to the double echo with steady 
state because only the preparation modules are sensitive 
to physiologic motion, as opposed to each signal readout. 
Furthermore, compared with MRF and stimulated echo–
based mapping (69), the multitasking framework achieves 
comprehensive T1, T2, and ADC quantification (Fig 10) with 

three noncolinear diffusion directions, thus matching the 
standard clinical diffusion-weighted imaging protocol. In 
its current implementation, it achieves 100-mm coverage  
(20 sections) in 9.3 minutes. 

MP-qMRI Applications
The scope of MP-qMRI applications for neuroimaging may 
not be fully predicted at this early stage of development. 
At the current rapid pace of progress, the creation of a 
comprehensive MP-qMRI virtual central nervous system 
analog at high spatial resolution (approximately 0.25 mm3) 
seems achievable in the not-so-distant future. With rapidly
improving image processing techniques and continuous 
advances in computer hardware, MP-qMRI has the poten-
tial for improving MRI in ways that may not be fully envi-
sioned at this time. Currently, three MP-qMRI applications 
emerge as logical contenders: synthetic MRI, macrostruc-
tural qMRI, and MTM.

Synthetic MRI
Synthetic MRI uses computer models of MRI pulse sequen-
ces to “scan” the virtual patient, thus generating images 
with arbitrary contrast weightings. Synthetic MRI was in-
vented in the early 1980s (70,71). With the advent of faster
MP-qMRI frameworks, interest in synthetic MRI is regai-
ning momentum, in part to simplify and standardize clinical
protocols and additionally to enable visual exploration of 
contrast weightings that may be more revealing of intravo-
xel tissue architecture and subtle pathologic abnormalities. 

Figure 9: Schematic overview of the convolutional neural networks model with two modules for tissue property mapping. (A) The feature extraction 
module consists of four fully connected layers (FNNs), which is designed to mimic singular value decomposition to reduce the dimension of signal 
evolutions. The U-Net structure was used for the spatially constrained quantification module to capture spatial information from neighboring pixels 
for improved quantification of tissue properties. MR fingerprinting (MRF) images of three contiguous sections (red) were used as input, and the 
corresponding reference T1 and T2 maps from the central section were used as output for the network. (B) Reformatted quantitative maps in axial, 
coronal, and sagittal views from the prospectively accelerated scan (three-dimensional MRF, standard; R = 2; 192 time points). The acquisition time 
for 176 sections was about 7 minutes. (From reference 20. Note: The referenced article is available under the Creative Commons CC-BY-NCND 
license, which permits noncommercial use of the work as published, without adaptation or alteration, provided the work is fully attributed.)
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Remarkably, some synthetic pulse sequences may not 
have a known clinical analog, such as pulse sequences 
weighted by the inverse of T1, namely R1. This can be used 
to bring out the underlying structural framework of WM (Fig 
11) owing to its high average R1 values of myelinated tissue.

Macrostructural qMRI
Macrostructural qMRI seeks to automatically detect and 
group voxels using simultaneously positional (x, y, z) and 
qMRI (eg, PD, T1, T2) attributes to classify them into seg-
ments associated with tissue types and/or organs. Such a 
rich set of voxel attributes can serve as classifiers for auto-
mated segmentation with use of multiclustering algorithms 
that are useful for parceling the brain into tissue segments 
(3). Tissue and/or organ volumetry and relaxographic qMRI 
with histograms can then be implemented automatically 
(Fig 6B), thus providing useful data constructs for com-
paring patients in multisite and longitudinal studies. The 
generated macromeasures can be useful for designing 
a standardized clinical qMRI report to support and com-
plement the radiologic report, provided that normal qMRI 
parameter ranges have been established as functions of 
key modifiers such as age and sex.

Microstructural Tissue Modeling
MTM seeks to decode the intravoxel microarchitecture with
use of computer modeling based on prior knowledge, as 
opposed to by increasing the spatial resolution of the scan, 
an approach that currently seems to be more limited in 
terms of resolution improvement potential. MTM offers the 
potential for assessing the intravoxel composition in terms 
of the building neuro-elements (somas, axons, myelin, 
dendrites, and glia); in other words, it has the potential for 
achieving noninvasive in vivo histologic examination (28). 

MTM developments have been predominantly by means of
dMRI (30) mainly applied to WM and, to a lesser extent, 
GM (72). Recent research studying the dependencies of 
T1 microstructure is promising yet still not ready for in vivo 
applications (47).

Future Directions 
Although most radiologists are aware of the potential be-
nefits of using qMRI and that the technologies are appro-
aching clinical and commercial deployment status, MP-
qMRI of PD, T1, and T2 (T2

*) has yet to achieve routine 
clinical use. We can learn from the implementation history 
of dMRI that the adoption of qMRI frameworks depends 
primarily on three factors, in order of importance: medical 
necessity with a critical clinical question, diagnostic effica-
cy and reproducibility, and technology availability.
In the case of dMRI, detection of early ischemia was the ur-
gent clinical indication; ADC reduction was the indisputable
and reproducible dMRI effect. Since then, dMRI has found 
numerous additional brain and body applications, particu-
larly for tumor characterization (73).
Because examples of MP-qMRI frameworks have been 
described that incorporate ADC (Tables 1, 2), we may fo-
resee that deploying four-dimensional MP-qMRI (PD, T1, 
T2, ADC) as spatially coregistered frameworks could pro-
vide a seamless clinical adoption avenue. Such efforts are  
further strengthened by organized efforts to develop rigo-
rous scientific standards of PD, T1, T2, and ADC (74) as 
well as reliability and reproducibility (75) studies reporting 
encouraging results. Use of four-dimensional frameworks 
could come at no extra time-cost either at acquisition or 
image processing and would augment the diagnostic  
information for patients with stroke and cancer. It would  
further open quantification possibilities for clinical appli-

Figure 10: Representative in vivo T1, T2, and apparent diffusion coefficient (ADC) mapping of three sections with use of multitasking and the re-
spective reference protocols in a healthy volunteer. Multitasking provides T1, T2, and ADC maps with good qualitative agreement with the references 
and without image distortion (white arrows), which can be observed on single-shot echoplanar imaging ADC maps. (Reprinted, with permission, 
from reference 7.)
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cations uniquely suited to PD, T1, and T2 (T2
*) qMRI, such 

as any application involving WM abnormalities (eg, myelin 
disorders), GM abnormalities (eg, iron accumulation), and 
abnormal watercontent (eg, edema). In addition, this would 
enable exploration of contrast weightings with synthetic 
MRI and pave the road for MTM applications that would 
provide microscopic insights on the tissue structure in neu-
rologic disease.

Conclusion
Since the initial proposals of fast brain multiparametric 
quantitative MRI frameworks more than a decade ago, the 
field is at a transition point between research and develop-
ment and clinical implementation, with some commercial 

implementations on the horizon. The building-block acqui-
sition and processing technologies are well advanced to 
propel the field into a coherent clinical testing phase, with 
potential acceptance in the next decade if standardization 
agreements, quality control protocols, and theoretical cla-
rifications occur.
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