000909572 001__ 909572
000909572 005__ 20230223092203.0
000909572 0247_ $$2doi$$a10.1002/hbm.26030
000909572 0247_ $$2ISSN$$a1065-9471
000909572 0247_ $$2ISSN$$a1097-0193
000909572 0247_ $$2pmid$$a35916531
000909572 0247_ $$2WOS$$aWOS:000834876600001
000909572 0247_ $$2Handle$$a2128/33241
000909572 037__ $$aFZJ-2022-03254
000909572 082__ $$a610
000909572 1001_ $$0P:(DE-Juel1)171557$$aStumme, Johanna$$b0
000909572 245__ $$aInterrelating differences in structural and functional connectivity in the older adult's brain
000909572 260__ $$aNew York, NY$$bWiley-Liss$$c2022
000909572 3367_ $$2DRIVER$$aarticle
000909572 3367_ $$2DataCite$$aOutput Types/Journal article
000909572 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670310940_6308
000909572 3367_ $$2BibTeX$$aARTICLE
000909572 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909572 3367_ $$00$$2EndNote$$aJournal Article
000909572 520__ $$aIn the normal aging process, the functional connectome restructures and shows a shift from more segregated to more integrated brain networks, which manifests itself in highly different cognitive performances in older adults. Underpinnings of this reorganization are not fully understood, but may be related to age-related differences in structural connectivity, the underlying scaffold for information exchange between regions. The structure–function relationship might be a promising factor to understand the neurobiological sources of interindividual cognitive variability, but remain unclear in older adults. Here, we used diffusion weighted and resting-state functional magnetic resonance imaging as well as cognitive performance data of 573 older subjects from the 1000BRAINS cohort (55–85 years, 287 males) and performed a partial least square regression on 400 regional functional and structural connectivity (FC and SC, respectively) estimates comprising seven resting-state networks. Our aim was to identify FC and SC patterns that are, together with cognitive performance, characteristic of the older adults aging process. Results revealed three different aging profiles prevalent in older adults. FC was found to behave differently depending on the severity of age-related SC deteriorations. A functionally highly interconnected system is associated with a structural connectome that shows only minor age-related decreases. Because this connectivity profile was associated with the most severe age-related cognitive decline, a more interconnected FC system in older adults points to a process of dedifferentiation. Thus, functional network integration appears to increase primarily when SC begins to decline, but this does not appear to mitigate the decline in cognitive performance.
000909572 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000909572 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000909572 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909572 7001_ $$0P:(DE-Juel1)180200$$aKrämer, Camilla$$b1
000909572 7001_ $$0P:(DE-Juel1)181023$$aMiller, Tatiana$$b2$$ufzj
000909572 7001_ $$0P:(DE-Juel1)169295$$aSchreiber, Jan$$b3
000909572 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b4$$ufzj
000909572 7001_ $$0P:(DE-Juel1)145386$$aJockwitz, Christiane$$b5$$eCorresponding author
000909572 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.26030$$gp. hbm.26030$$n18$$p5543-5561$$tHuman brain mapping$$v43$$x1065-9471$$y2022
000909572 8564_ $$uhttps://juser.fz-juelich.de/record/909572/files/1200186597_MPDL_Rechnung.pdf
000909572 8564_ $$uhttps://juser.fz-juelich.de/record/909572/files/Human%20Brain%20Mapping%20-%202022%20-%20Stumme%20-%20Interrelating%20differences%20in%20structural%20and%20functional%20connectivity%20in%20the%20older.pdf$$yOpenAccess
000909572 8767_ $$8W-2022-00608-b$$92022-11-28$$d2022-12-06$$eAPC$$jZahlung erfolgt
000909572 909CO $$ooai:juser.fz-juelich.de:909572$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000909572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171557$$aForschungszentrum Jülich$$b0$$kFZJ
000909572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180200$$aForschungszentrum Jülich$$b1$$kFZJ
000909572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181023$$aForschungszentrum Jülich$$b2$$kFZJ
000909572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b4$$kFZJ
000909572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145386$$aForschungszentrum Jülich$$b5$$kFZJ
000909572 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000909572 9141_ $$y2022
000909572 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909572 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000909572 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000909572 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000909572 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000909572 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909572 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-22$$wger
000909572 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000909572 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000909572 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-27T20:46:01Z
000909572 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-27T20:46:01Z
000909572 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-27T20:46:01Z
000909572 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000909572 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000909572 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-22
000909572 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-22
000909572 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2021$$d2022-11-22
000909572 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-22
000909572 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-22
000909572 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bHUM BRAIN MAPP : 2021$$d2022-11-22
000909572 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909572 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000909572 980__ $$ajournal
000909572 980__ $$aVDB
000909572 980__ $$aUNRESTRICTED
000909572 980__ $$aI:(DE-Juel1)INM-1-20090406
000909572 980__ $$aAPC
000909572 9801_ $$aAPC
000909572 9801_ $$aFullTexts