000909576 001__ 909576
000909576 005__ 20230123110647.0
000909576 0247_ $$2doi$$a10.1016/j.tics.2022.07.001
000909576 0247_ $$2ISSN$$a1364-6613
000909576 0247_ $$2ISSN$$a1879-307X
000909576 0247_ $$2Handle$$a2128/31850
000909576 0247_ $$2pmid$$a35909021
000909576 0247_ $$2WOS$$aWOS:000864585600009
000909576 037__ $$aFZJ-2022-03258
000909576 082__ $$a150
000909576 1001_ $$0P:(DE-Juel1)187055$$aPaquola, Casey$$b0$$eCorresponding author$$ufzj
000909576 245__ $$aClosing the mechanistic gap: the value of microarchitecture in understanding cognitive networks
000909576 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000909576 3367_ $$2DRIVER$$aarticle
000909576 3367_ $$2DataCite$$aOutput Types/Journal article
000909576 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663236707_9523
000909576 3367_ $$2BibTeX$$aARTICLE
000909576 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909576 3367_ $$00$$2EndNote$$aJournal Article
000909576 520__ $$aCognitive neuroscience aims to provide biologically relevant accounts of cognition. Contemporary research linking spatial patterns of neural activity to psychological constructs describes 'where' hypothesised functions occur, but not 'how' these regions contribute to cognition. Technological, empirical, and conceptual advances allow this mechanistic gap to be closed by embedding patterns of functional activity in macro- and microscale descriptions of brain organisation. Recent work on the default mode network (DMN) and the multiple demand network (MDN), for example, highlights a microarchitectural landscape that may explain how activity in these networks integrates varied information, thus providing an anatomical foundation that will help to explain how these networks contribute to many different cognitive states. This perspective highlights emerging insights into how microarchitecture can constrain network accounts of human cognition
000909576 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000909576 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x1
000909576 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000909576 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909576 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b1$$ufzj
000909576 7001_ $$0P:(DE-HGF)0$$aEvans, Alan$$b2
000909576 7001_ $$0P:(DE-HGF)0$$aSmallwood, Jonathan$$b3
000909576 7001_ $$0P:(DE-HGF)0$$aBernhardt, Boris$$b4$$eCorresponding author
000909576 773__ $$0PERI:(DE-600)2010989-1$$a10.1016/j.tics.2022.07.001$$gp. S1364661322001589$$n10$$p873-886$$tTrends in cognitive sciences$$v26$$x1364-6613$$y2022
000909576 8564_ $$uhttps://juser.fz-juelich.de/record/909576/files/1-s2.0-S1364661322001589-main.pdf$$yOpenAccess
000909576 909CO $$ooai:juser.fz-juelich.de:909576$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000909576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187055$$aForschungszentrum Jülich$$b0$$kFZJ
000909576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b1$$kFZJ
000909576 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000909576 9141_ $$y2022
000909576 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000909576 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000909576 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909576 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000909576 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRENDS COGN SCI : 2021$$d2022-11-09
000909576 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000909576 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000909576 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000909576 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000909576 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000909576 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2022-11-09
000909576 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000909576 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-09
000909576 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2022-11-09
000909576 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bTRENDS COGN SCI : 2021$$d2022-11-09
000909576 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000909576 980__ $$ajournal
000909576 980__ $$aVDB
000909576 980__ $$aUNRESTRICTED
000909576 980__ $$aI:(DE-Juel1)INM-1-20090406
000909576 9801_ $$aFullTexts