001     909578
005     20240313094856.0
037 _ _ |a FZJ-2022-03260
041 _ _ |a English
100 1 _ |a Linssen, Charl
|0 P:(DE-Juel1)176305
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 31st Annual Computational Neuroscience Meeting, CNS*2022
|c Melbourne
|d 2022-07-16 - 2022-07-20
|w Australia
245 _ _ |a From single-cell modeling to large-scale network dynamics with NEST Simulator
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1662624932_13999
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a NEST is an established, open-source simulator for spiking neuronal networks, which can capture a high degree of detail of biological network structures while retaining high performance and scalability from laptops to HPC [1]. This tutorial provides hands-on experience in building and simulating neuron, synapse, and network models. It introduces several tools and front-ends to implement modeling ideas most efficiently. Participants do not have to install software as all tools can be accessed via the cloud.First, we look at NEST Desktop [2], a web-based graphical user interface (GUI), which allows the exploration of essential concepts in computational neuroscience without the need to learn a programming language. This advances both the quality and speed of teaching in computational neuroscience. To get acquainted with the GUI, we will create and analyze abalanced two-population network.The model is then exported to a Jupyter notebook and endowed with a data-driven spatial connectivity profile of the cortex, enabling us to study the propagation of activity. Then, we make the synapses in the network plastic and let the network learn a reinforcement learning task, whereby the learning rule goes beyond pre-synaptic and post-synaptic spikes by addinga dopamine signal as a modulatory third factor. NESTML [3] makes it easy to express this and other advanced synaptic plasticity rules and neuron models, and automatically translates them into fast simulation code.More morphologically detailed models, with a large number of compartments and custom ion channels and receptor currents, can also be defined using NESTML. We first implement a simple dendritic layout and use it to perform a sequence discrimination task. Next, we implement a compartmental layout representing semi-independent subunits and recurrentlyconnect several such neurons to elicit an NMDA-spike driven network state.
536 _ _ |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523)
|0 G:(DE-HGF)POF4-5235
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 1
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 2
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 3
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 4
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 5
700 1 _ |a Korcsak-Gorzo, Agnes
|0 P:(DE-Juel1)176282
|b 1
|u fzj
700 1 _ |a Albers, Jasper
|0 P:(DE-Juel1)180539
|b 2
|u fzj
700 1 _ |a Babu, Pooja
|0 P:(DE-Juel1)186954
|b 3
|u fzj
700 1 _ |a Böttcher, Joshua
|0 P:(DE-Juel1)188317
|b 4
|u fzj
700 1 _ |a Mitchell, Jessica
|0 P:(DE-Juel1)172945
|b 5
|u fzj
700 1 _ |a Wybo, Willem
|0 P:(DE-Juel1)186881
|b 6
|u fzj
700 1 _ |a Bruchertseifer, Jens
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Spreizer, Sebastian
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Terhorst, Dennis
|0 P:(DE-Juel1)169778
|b 9
|u fzj
856 4 _ |u https://www.cnsorg.org/cns-2022-tutorials#T1
909 C O |o oai:juser.fz-juelich.de:909578
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176305
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176282
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180539
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186954
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)188317
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172945
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)186881
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)169778
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5235
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 2
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 3
914 1 _ |y 2022
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 2
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 3
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21