000909633 001__ 909633 000909633 005__ 20231027114345.0 000909633 0247_ $$2doi$$a10.1093/neuonc/noac189 000909633 0247_ $$2ISSN$$a1522-8517 000909633 0247_ $$2ISSN$$a1523-5866 000909633 0247_ $$2Handle$$a2128/34156 000909633 0247_ $$2pmid$$a35917833 000909633 0247_ $$2WOS$$aWOS:000843014300001 000909633 037__ $$aFZJ-2022-03304 000909633 082__ $$a610 000909633 1001_ $$00000-0002-6224-0064$$aVollmuth, Philipp$$b0 000909633 245__ $$aArtificial intelligence (AI)-based decision support improves reproducibility of tumor response assessment in neuro-oncology: An international multi-reader study 000909633 260__ $$aOxford$$bOxford Univ. Press$$c2023 000909633 3367_ $$2DRIVER$$aarticle 000909633 3367_ $$2DataCite$$aOutput Types/Journal article 000909633 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679045188_15079 000909633 3367_ $$2BibTeX$$aARTICLE 000909633 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000909633 3367_ $$00$$2EndNote$$aJournal Article 000909633 520__ $$aBackground: To assess whether AI-based decision support allows more reproducible and standardized assessment of treatment response on MRI in neuro-oncology as compared to manual 2-dimensional measurements of tumor burden using the RANO criteria.Methods: A series of 30 patients (15 lower-grade gliomas, 15 glioblastoma) with availability of consecutive MRI scans was selected. The time to progression (TTP) on MRI was separately evaluated for each patient by 15 investigators over two rounds. In the 1 st round the TTP was evaluated based on the RANO-criteria, whereas in the 2 nd round the TTP was evaluated by incorporating additional information from AI-enhanced MRI-sequences depicting the longitudinal changes in tumor volumes. The agreement of the TTP-measurements between investigators was evaluated using concordance correlation coefficients (CCC) with confidence intervals (CI) and p-values obtained using bootstrap resampling.Results: The CCC of TTP-measurements between investigators was 0.77 (95%CI=0.69,0.88) with RANO alone and increased to 0.91 (95%CI=0.82,0.95) with AI-based decision support (p=0.005). This effect was significantly greater (p=0.008) for patients with lower-grade gliomas (CCC=0.70 [95%CI=0.56,0.85] without vs. 0.90 [95%CI=0.76,0.95] with AI-based decision support) as compared to glioblastoma (CCC=0.83 [95%CI=0.75,0.92] without vs. 0.86 [95%CI=0.78,0.93] with AI-based decision support). Investigators with less years of experience judged the AI-based decision as more helpful (p=0.02).Conclusions: AI-based decision support has the potential to yield more reproducible and standardized assessment of treatment response in neuro-oncology as compared to manual 2-dimensional measurements of tumor burden, particularly in patients with lower-grade gliomas. A fully-functional version of this AI-based processing pipeline is provided as open-source (https://github.com/NeuroAI-HD/HD-GLIO-XNAT).Keywords: AI-based decision support; RANO; tumor response assessment; tumor volumetry. 000909633 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0 000909633 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000909633 7001_ $$0P:(DE-HGF)0$$aFoltyn, Martha$$b1 000909633 7001_ $$0P:(DE-HGF)0$$aHuang, Raymond Y$$b2 000909633 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b3$$eCorresponding author 000909633 7001_ $$0P:(DE-HGF)0$$aPetersen, Jens$$b4 000909633 7001_ $$0P:(DE-HGF)0$$aIsensee, Fabian$$b5 000909633 7001_ $$0P:(DE-HGF)0$$avan den Bent, Martin J$$b6 000909633 7001_ $$0P:(DE-HGF)0$$aBarkhof, Frederik$$b7 000909633 7001_ $$0P:(DE-Juel1)176252$$aPark, Ji Eun$$b8$$ufzj 000909633 7001_ $$00000-0001-8907-5401$$aPark, Yae Won$$b9 000909633 7001_ $$00000-0002-0503-5558$$aAhn, Sung Soo$$b10 000909633 7001_ $$0P:(DE-HGF)0$$aBrugnara, Gianluca$$b11 000909633 7001_ $$0P:(DE-HGF)0$$aMeredig, Hagen$$b12 000909633 7001_ $$0P:(DE-HGF)0$$aJain, Rajan$$b13 000909633 7001_ $$00000-0001-5563-2871$$aSmits, Marion$$b14 000909633 7001_ $$0P:(DE-HGF)0$$aPope, Whitney B$$b15 000909633 7001_ $$0P:(DE-HGF)0$$aMaier-Hein, Klaus$$b16 000909633 7001_ $$00000-0002-1748-174X$$aWeller, Michael$$b17 000909633 7001_ $$0P:(DE-HGF)0$$aWen, Patrick Y$$b18 000909633 7001_ $$00000-0002-6171-634X$$aWick, Wolfgang$$b19 000909633 7001_ $$00000-0002-9094-6769$$aBendszus, Martin$$b20 000909633 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noac189$$gp. noac189$$n3$$p533–543$$tNeuro-Oncology$$v25$$x1522-8517$$y2023 000909633 8564_ $$uhttps://juser.fz-juelich.de/record/909633/files/POSTPRINT.pdf$$yPublished on 2022-08-02. Available in OpenAccess from 2023-08-02. 000909633 8564_ $$uhttps://juser.fz-juelich.de/record/909633/files/Postprint.pdf$$yPublished on 2022-08-02. Available in OpenAccess from 2023-08-02. 000909633 909CO $$ooai:juser.fz-juelich.de:909633$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000909633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b3$$kFZJ 000909633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176252$$aForschungszentrum Jülich$$b8$$kFZJ 000909633 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000909633 9141_ $$y2023 000909633 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000909633 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08 000909633 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08 000909633 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-24$$wger 000909633 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2022$$d2023-10-24 000909633 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24 000909633 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24 000909633 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24 000909633 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24 000909633 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24 000909633 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-24 000909633 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURO-ONCOLOGY : 2022$$d2023-10-24 000909633 920__ $$lyes 000909633 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 000909633 980__ $$ajournal 000909633 980__ $$aVDB 000909633 980__ $$aUNRESTRICTED 000909633 980__ $$aI:(DE-Juel1)INM-3-20090406 000909633 9801_ $$aFullTexts