000909641 001__ 909641
000909641 005__ 20240625095123.0
000909641 0247_ $$2doi$$a10.3389/fmolb.2022.899805
000909641 0247_ $$2Handle$$a2128/31865
000909641 0247_ $$2pmid$$a35755817
000909641 0247_ $$2WOS$$aWOS:000814363000001
000909641 037__ $$aFZJ-2022-03312
000909641 041__ $$aEnglish
000909641 082__ $$a570
000909641 1001_ $$0P:(DE-Juel1)186082$$aAhmad, Katya$$b0$$ufzj
000909641 245__ $$aEnhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective
000909641 260__ $$aLausanne$$bFrontiers$$c2022
000909641 3367_ $$2DRIVER$$aarticle
000909641 3367_ $$2DataCite$$aOutput Types/Journal article
000909641 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663672680_27718
000909641 3367_ $$2BibTeX$$aARTICLE
000909641 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909641 3367_ $$00$$2EndNote$$aJournal Article
000909641 520__ $$aThe dissociation rate (koff) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of koff. Next, we discuss the impact of the potential energy function models on the accuracy of calculated koff values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.
000909641 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000909641 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000909641 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909641 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000909641 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x1
000909641 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
000909641 7001_ $$0P:(DE-Juel1)180791$$aRizzi, Andrea$$b1$$ufzj
000909641 7001_ $$0P:(DE-Juel1)174546$$aCapelli, Riccardo$$b2
000909641 7001_ $$0P:(DE-Juel1)190906$$aMandelli, Davide$$b3$$ufzj
000909641 7001_ $$0P:(DE-Juel1)180596$$aLyu, Wenping$$b4
000909641 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b5$$eCorresponding author
000909641 773__ $$0PERI:(DE-600)2814330-9$$a10.3389/fmolb.2022.899805$$gVol. 9, p. 899805$$p899805$$tFrontiers in molecular biosciences$$v9$$x2296-889X$$y2022
000909641 8564_ $$uhttps://juser.fz-juelich.de/record/909641/files/fmolb-09-899805.pdf$$yOpenAccess
000909641 8767_ $$d2022-12-20$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2507,50 USD
000909641 909CO $$ooai:juser.fz-juelich.de:909641$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000909641 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186082$$aForschungszentrum Jülich$$b0$$kFZJ
000909641 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180791$$aForschungszentrum Jülich$$b1$$kFZJ
000909641 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190906$$aForschungszentrum Jülich$$b3$$kFZJ
000909641 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b5$$kFZJ
000909641 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000909641 9141_ $$y2022
000909641 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000909641 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000909641 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000909641 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-18
000909641 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-18
000909641 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000909641 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-18
000909641 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-18
000909641 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909641 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-18
000909641 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000909641 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000909641 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T12:25:52Z
000909641 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T12:25:52Z
000909641 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T12:25:52Z
000909641 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000909641 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000909641 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-22
000909641 920__ $$lyes
000909641 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000909641 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000909641 9801_ $$aFullTexts
000909641 980__ $$ajournal
000909641 980__ $$aVDB
000909641 980__ $$aUNRESTRICTED
000909641 980__ $$aI:(DE-Juel1)IAS-5-20120330
000909641 980__ $$aI:(DE-Juel1)INM-9-20140121
000909641 980__ $$aAPC