000909650 001__ 909650
000909650 005__ 20240711113515.0
000909650 0247_ $$2doi$$a10.1088/1361-6587/ac828a
000909650 0247_ $$2ISSN$$a0032-1028
000909650 0247_ $$2ISSN$$a0368-3281
000909650 0247_ $$2ISSN$$a0741-3335
000909650 0247_ $$2ISSN$$a1361-6587
000909650 0247_ $$2ISSN$$a1879-2979
000909650 0247_ $$2ISSN$$a2057-7648
000909650 0247_ $$2Handle$$a2128/31839
000909650 0247_ $$2WOS$$aWOS:000850358100001
000909650 037__ $$aFZJ-2022-03318
000909650 082__ $$a620
000909650 1001_ $$00000-0002-1830-5991$$aSalazar, Luigui$$b0
000909650 245__ $$aExtraction of quasi-coherent modes based on reflectometry data
000909650 260__ $$aBristol$$bIOP Publ.$$c2022
000909650 3367_ $$2DRIVER$$aarticle
000909650 3367_ $$2DataCite$$aOutput Types/Journal article
000909650 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662965477_30653
000909650 3367_ $$2BibTeX$$aARTICLE
000909650 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909650 3367_ $$00$$2EndNote$$aJournal Article
000909650 520__ $$aThe identification of turbulence sources would drive to a deeper understanding of confinement dynamics in tokamak plasmas. Turbulence results from a mixture of instabilities corresponding to sources at different timescales and spatial scales. Using poloidal correlation reflectometry and multi-pin Langmuir probe, it was shown in the T-10 and the Tokamak Experiment for Technology Oriented Research (TEXTOR) tokamaks that the reflectometry frequency spectrum is the superposition of several components: broadband component, quasi-coherent (QC) modes and low-frequency components. The relevance of QC modes is associated with their link with the trapped electron mode instability. This link was exhibited in the transition from the linear ohmic confinement (LOC) to the saturated ohmic confinement (SOC) regime. A method is presented in this paper to extract the QC mode component from the reflectometry data, enabling its separation from the broadband component and the study of its time evolution. It is a first step toward the discrimination of turbulence sources. The central idea explores a way to combine the approach of signal processing and machine learning. The continuous wavelet transform on the basis of complex Morlet wavelet has proved to be efficient in providing a decomposition of a signal at different scales over time for fluctuation tackling; clustering techniques, such as the mini-batch K-means, are able to tackle clusters at different scales. The method was applied to Tore Supra and TEXTOR reflectometry data. In Tore Supra, the amplitude of the extracted QC mode component decreases during the LOC–SOC transition. In TEXTOR, the amplitude of the coherent spectra of the extracted QC mode component is similar to the experimental coherent spectra obtained through correlation reflectometry. The developed method permits the extraction of components, preserving their physical and statistical properties.
000909650 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000909650 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909650 7001_ $$00000-0001-7035-4574$$aHeuraux, Stéphane$$b1
000909650 7001_ $$00000-0002-7419-9871$$aSabot, Roland$$b2
000909650 7001_ $$0P:(DE-Juel1)130075$$aKrämer-Flecken, Andreas$$b3$$eCorresponding author
000909650 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/1361-6587/ac828a$$gVol. 64, no. 10, p. 104007 -$$n10$$p104007 -$$tPlasma physics and controlled fusion$$v64$$x0032-1028$$y2022
000909650 8564_ $$uhttps://juser.fz-juelich.de/record/909650/files/Salazar_2022_Plasma_Phys._Control._Fusion_64_104007%281%29.pdf$$yRestricted
000909650 8564_ $$uhttps://juser.fz-juelich.de/record/909650/files/Postprint_Extraction%20of%20Quasi-Cohrent%20Modes.pdf$$yOpenAccess
000909650 909CO $$ooai:juser.fz-juelich.de:909650$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130075$$aForschungszentrum Jülich$$b3$$kFZJ
000909650 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000909650 9141_ $$y2022
000909650 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000909650 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000909650 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000909650 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909650 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-19$$wger
000909650 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000909650 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000909650 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000909650 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000909650 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-19
000909650 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA PHYS CONTR F : 2021$$d2022-11-19
000909650 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-19
000909650 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-19
000909650 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-19
000909650 920__ $$lyes
000909650 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000909650 9801_ $$aFullTexts
000909650 980__ $$ajournal
000909650 980__ $$aVDB
000909650 980__ $$aUNRESTRICTED
000909650 980__ $$aI:(DE-Juel1)IEK-4-20101013
000909650 981__ $$aI:(DE-Juel1)IFN-1-20101013