001     909650
005     20240711113515.0
024 7 _ |a 10.1088/1361-6587/ac828a
|2 doi
024 7 _ |a 0032-1028
|2 ISSN
024 7 _ |a 0368-3281
|2 ISSN
024 7 _ |a 0741-3335
|2 ISSN
024 7 _ |a 1361-6587
|2 ISSN
024 7 _ |a 1879-2979
|2 ISSN
024 7 _ |a 2057-7648
|2 ISSN
024 7 _ |a 2128/31839
|2 Handle
024 7 _ |a WOS:000850358100001
|2 WOS
037 _ _ |a FZJ-2022-03318
082 _ _ |a 620
100 1 _ |a Salazar, Luigui
|0 0000-0002-1830-5991
|b 0
245 _ _ |a Extraction of quasi-coherent modes based on reflectometry data
260 _ _ |a Bristol
|c 2022
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1662965477_30653
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The identification of turbulence sources would drive to a deeper understanding of confinement dynamics in tokamak plasmas. Turbulence results from a mixture of instabilities corresponding to sources at different timescales and spatial scales. Using poloidal correlation reflectometry and multi-pin Langmuir probe, it was shown in the T-10 and the Tokamak Experiment for Technology Oriented Research (TEXTOR) tokamaks that the reflectometry frequency spectrum is the superposition of several components: broadband component, quasi-coherent (QC) modes and low-frequency components. The relevance of QC modes is associated with their link with the trapped electron mode instability. This link was exhibited in the transition from the linear ohmic confinement (LOC) to the saturated ohmic confinement (SOC) regime. A method is presented in this paper to extract the QC mode component from the reflectometry data, enabling its separation from the broadband component and the study of its time evolution. It is a first step toward the discrimination of turbulence sources. The central idea explores a way to combine the approach of signal processing and machine learning. The continuous wavelet transform on the basis of complex Morlet wavelet has proved to be efficient in providing a decomposition of a signal at different scales over time for fluctuation tackling; clustering techniques, such as the mini-batch K-means, are able to tackle clusters at different scales. The method was applied to Tore Supra and TEXTOR reflectometry data. In Tore Supra, the amplitude of the extracted QC mode component decreases during the LOC–SOC transition. In TEXTOR, the amplitude of the coherent spectra of the extracted QC mode component is similar to the experimental coherent spectra obtained through correlation reflectometry. The developed method permits the extraction of components, preserving their physical and statistical properties.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Heuraux, Stéphane
|0 0000-0001-7035-4574
|b 1
700 1 _ |a Sabot, Roland
|0 0000-0002-7419-9871
|b 2
700 1 _ |a Krämer-Flecken, Andreas
|0 P:(DE-Juel1)130075
|b 3
|e Corresponding author
773 _ _ |a 10.1088/1361-6587/ac828a
|g Vol. 64, no. 10, p. 104007 -
|0 PERI:(DE-600)1473144-7
|n 10
|p 104007 -
|t Plasma physics and controlled fusion
|v 64
|y 2022
|x 0032-1028
856 4 _ |u https://juser.fz-juelich.de/record/909650/files/Salazar_2022_Plasma_Phys._Control._Fusion_64_104007%281%29.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/909650/files/Postprint_Extraction%20of%20Quasi-Cohrent%20Modes.pdf
909 C O |o oai:juser.fz-juelich.de:909650
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130075
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLASMA PHYS CONTR F : 2021
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-19
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21