001     909652
005     20230123110649.0
024 7 _ |a 10.1002/bit.28208
|2 doi
024 7 _ |a 0006-3592
|2 ISSN
024 7 _ |a 0368-1467
|2 ISSN
024 7 _ |a 1097-0290
|2 ISSN
024 7 _ |a 1547-173X
|2 ISSN
024 7 _ |a 2128/32067
|2 Handle
024 7 _ |a 35950295
|2 pmid
024 7 _ |a WOS:000848750900001
|2 WOS
037 _ _ |a FZJ-2022-03320
082 _ _ |a 570
100 1 _ |a Täuber, Sarah
|0 0000-0002-1515-1763
|b 0
245 _ _ |a Microfluidic single‐cell scale‐down bioreactors: A proof‐of‐concept for the growth of Corynebacterium glutamicum at oscillating pH values
260 _ _ |a New York, NY [u.a.]
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1666083290_30577
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In large-scale bioreactors, gradients in cultivation parameters such as oxygen, substrate, and pH result in fluctuating cell environments. pH fluctuations were identified as a critical parameter for bioprocess performance. Traditionally, scale-down systems at the laboratory scale are used to analyze the effects of fluctuating pH values on strains and thus process performance. Here, we demonstrate the application of dynamic microfluidic single-cell cultivation (dMSCC) as a novel scale-down system for the characterization of Corynebacterium glutamicum growth using oscillating pH conditions as a model stress factor. A detailed comparison between two-compartment reactor (two-CR) scale-down experiments and dMSCC was performed for one specific pH oscillation between reference pH 7 (~8 min) and disturbed pH 6 (~2 min). Similar reductions in growth rates were observed in both systems (dMSCC 21% and two-CR 27%) compared to undisturbed cultivation at pH 7. Afterward, systematic experiments at symmetric and asymmetric pH oscillations, between pH ranges of 4–6 and 8–11 and different intervals from 1 to 20 min, were performed to demonstrate the unique application range and throughput of the dMSCC system. Finally, the strength of the dMSCC application was demonstrated by mimicking fluctuating environmental conditions of a putative large-scale bioprocess, which is difficult to conduct using two-CRs
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Blöbaum, Luisa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Steier, Valentin
|0 P:(DE-Juel1)179505
|b 2
700 1 _ |a Oldiges, Marco
|0 P:(DE-Juel1)129053
|b 3
700 1 _ |a Grünberger, Alexander
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1002/bit.28208
|g p. bit.28208
|0 PERI:(DE-600)1480809-2
|n 11
|p 3194-3209
|t Biotechnology & bioengineering
|v 119
|y 2022
|x 0006-3592
856 4 _ |u https://juser.fz-juelich.de/record/909652/files/Biotech%20Bioengineering%20-%202022%20-%20T%20uber%20-%20Microfluidic%20single%E2%80%90cell%20scale%E2%80%90down%20bioreactors%20A%20proof%E2%80%90of%E2%80%90concept%20for%20the.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:909652
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179505
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129053
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOTECHNOL BIOENG : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-22
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21