000909653 001__ 909653
000909653 005__ 20240712112950.0
000909653 0247_ $$2doi$$a10.1016/j.nanoen.2021.106658
000909653 0247_ $$2ISSN$$a2211-2855
000909653 0247_ $$2ISSN$$a2211-3282
000909653 0247_ $$2Handle$$a2128/33434
000909653 0247_ $$2WOS$$aWOS:000717768500005
000909653 037__ $$aFZJ-2022-03321
000909653 082__ $$a660
000909653 1001_ $$0P:(DE-HGF)0$$aXu, Zhenhua$$b0
000909653 245__ $$aReducing energy barrier of δ-to-α phase transition for printed formamidinium lead iodide photovoltaic devices
000909653 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2022
000909653 3367_ $$2DRIVER$$aarticle
000909653 3367_ $$2DataCite$$aOutput Types/Journal article
000909653 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673332321_21290
000909653 3367_ $$2BibTeX$$aARTICLE
000909653 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000909653 3367_ $$00$$2EndNote$$aJournal Article
000909653 520__ $$aRecent progress in perovskite photovoltaics has witnessed a growing interest in formamidinium lead iodide (FAPbI3), primarily due to its high efficiency potential and excellent stability. However, the high energy barrier of δ-to-α phase transition presents a major hurdle to fabricate phase-pure α-FAPbI3 layers. Here, we report a two-step phase transition process to deposit high-quality photovoltaic α-FAPbI3 films by printing method. This is realized by judicious selection of a Lewis base N-methyl-2-pyrrolidone (NMP) and its counter Lewis acid, which enables the regulation of intermediary phase to reduce the energy barrier. With fine tuning the phase transition pathway, phase-pure and stable α-FAPbI3 perovskite films are obtained, which yield solar devices with a champion efficiency of 21.35%. The printed mini-modules with active areas of 12.32 cm2 and 55.44 cm2 are also fabricated, giving efficiencies of 17.07% and 14.17%, respectively. This work provides new insights of α-FAPbI3 crystallization for constructing efficient and stable printed photovoltaic devices.
000909653 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000909653 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000909653 7001_ $$0P:(DE-HGF)0$$aZeng, Linxiang$$b1
000909653 7001_ $$0P:(DE-HGF)0$$aHu, Jinlong$$b2
000909653 7001_ $$0P:(DE-Juel1)185975$$aWang, Zhenya$$b3
000909653 7001_ $$0P:(DE-HGF)0$$aZhang, Putao$$b4
000909653 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b5
000909653 7001_ $$0P:(DE-Juel1)178784$$aForberich, Karen$$b6
000909653 7001_ $$0P:(DE-HGF)0$$aMai, Yaohua$$b7$$eCorresponding author
000909653 7001_ $$0P:(DE-HGF)0$$aGuo, Fei$$b8$$eCorresponding author
000909653 773__ $$0PERI:(DE-600)2648700-7$$a10.1016/j.nanoen.2021.106658$$gVol. 91, p. 106658 -$$p106658 -$$tNano energy$$v91$$x2211-2855$$y2022
000909653 8564_ $$uhttps://juser.fz-juelich.de/record/909653/files/revisedmanuscript-%E5%89%AF%E6%9C%AC.docx$$yOpenAccess
000909653 909CO $$ooai:juser.fz-juelich.de:909653$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000909653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185975$$aForschungszentrum Jülich$$b3$$kFZJ
000909653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b5$$kFZJ
000909653 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178784$$aForschungszentrum Jülich$$b6$$kFZJ
000909653 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000909653 9141_ $$y2022
000909653 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000909653 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000909653 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000909653 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-30
000909653 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-30
000909653 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-30
000909653 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-30
000909653 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-30
000909653 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO ENERGY : 2021$$d2022-11-30
000909653 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-30
000909653 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNANO ENERGY : 2021$$d2022-11-30
000909653 920__ $$lyes
000909653 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000909653 9801_ $$aFullTexts
000909653 980__ $$ajournal
000909653 980__ $$aVDB
000909653 980__ $$aUNRESTRICTED
000909653 980__ $$aI:(DE-Juel1)IEK-11-20140314
000909653 981__ $$aI:(DE-Juel1)IET-2-20140314