Home > Publications database > Reducing energy barrier of δ-to-α phase transition for printed formamidinium lead iodide photovoltaic devices > print |
001 | 909653 | ||
005 | 20240712112950.0 | ||
024 | 7 | _ | |a 10.1016/j.nanoen.2021.106658 |2 doi |
024 | 7 | _ | |a 2211-2855 |2 ISSN |
024 | 7 | _ | |a 2211-3282 |2 ISSN |
024 | 7 | _ | |a 2128/33434 |2 Handle |
024 | 7 | _ | |a WOS:000717768500005 |2 WOS |
037 | _ | _ | |a FZJ-2022-03321 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Xu, Zhenhua |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Reducing energy barrier of δ-to-α phase transition for printed formamidinium lead iodide photovoltaic devices |
260 | _ | _ | |a Amsterdam [u.a.] |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1673332321_21290 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Recent progress in perovskite photovoltaics has witnessed a growing interest in formamidinium lead iodide (FAPbI3), primarily due to its high efficiency potential and excellent stability. However, the high energy barrier of δ-to-α phase transition presents a major hurdle to fabricate phase-pure α-FAPbI3 layers. Here, we report a two-step phase transition process to deposit high-quality photovoltaic α-FAPbI3 films by printing method. This is realized by judicious selection of a Lewis base N-methyl-2-pyrrolidone (NMP) and its counter Lewis acid, which enables the regulation of intermediary phase to reduce the energy barrier. With fine tuning the phase transition pathway, phase-pure and stable α-FAPbI3 perovskite films are obtained, which yield solar devices with a champion efficiency of 21.35%. The printed mini-modules with active areas of 12.32 cm2 and 55.44 cm2 are also fabricated, giving efficiencies of 17.07% and 14.17%, respectively. This work provides new insights of α-FAPbI3 crystallization for constructing efficient and stable printed photovoltaic devices. |
536 | _ | _ | |a 1212 - Materials and Interfaces (POF4-121) |0 G:(DE-HGF)POF4-1212 |c POF4-121 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Zeng, Linxiang |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Hu, Jinlong |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Wang, Zhenya |0 P:(DE-Juel1)185975 |b 3 |
700 | 1 | _ | |a Zhang, Putao |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Brabec, Christoph |0 P:(DE-Juel1)176427 |b 5 |
700 | 1 | _ | |a Forberich, Karen |0 P:(DE-Juel1)178784 |b 6 |
700 | 1 | _ | |a Mai, Yaohua |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
700 | 1 | _ | |a Guo, Fei |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.nanoen.2021.106658 |g Vol. 91, p. 106658 - |0 PERI:(DE-600)2648700-7 |p 106658 - |t Nano energy |v 91 |y 2022 |x 2211-2855 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/909653/files/revisedmanuscript-%E5%89%AF%E6%9C%AC.docx |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:909653 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)185975 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)176427 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)178784 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1212 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO ENERGY : 2021 |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-30 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NANO ENERGY : 2021 |d 2022-11-30 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-11-20140314 |k IEK-11 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-11-20140314 |
981 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|